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Abstract

An intelligent agent performs an action. Exactly one time step later the agent experiences
the consequence of its action. It observes the feedback from the environment, and finds
itself in a new state. The agent, then, is able to revise its belief about the quality of his
action based only on prior beliefs and this momentary feedback. This idea, of updating
estimates based on other estimates, roughly explains temporal difference learning, one
of the most fundamental concepts of reinforcement learning. It is a powerful idea, and
its uncanny analogues are observed in the activity of the dopamine-carrying neurons of
the human brain. The naive computational form of this idea, however, is understandably
limited. In particular: a single, primitive time-step experience is not sufficiently rich to
learn with sophistication.
In this dissertation, we consider this problem from several partially related and partially

complementary directions that all aim to enrich the single step.

Richer updates. Allowing the agent take multiple actions before making the update
makes it easier to judge their quality correctly. Unfortunately, doing so is fundamentally
difficult when the desired updates are off-policy, that is: concerning a course of actions
different from the agent’s behavior.
We devise novel off-policy multi-step algorithms that rely on the idea of correcting off-

policy actions in the value, rather than the conventional probability space, and analyze
their convergence,
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Abstract

Richer actions. Consider all of the micro-actions involved in doing something as simple
as walking. Yet, we are able to collapse them in a single complex macro-action. As
the agent gathers experience, it must likewise be able to ascend the levels of acting
hierarchy. The options framework is a general model for such temporal abstraction in
reinforcement learning.
We first make a novel link between the options framework, and multi-step temporal

difference planning. Using this link, we devise an algorithm that is able to learn about
options that terminate off-policy, that is: irrespectively of the behavior options. We then
propose and analyze a modification to the options framework, which allows options to
represent policies over longer planning horizons.

Richer feedback. Learning is rarely completely insular: when learning a new task, we as-
similate multiple sources of feedback. Likewise, in reinforcement learning, the environment
feedback alone may be too infrequent to be efficiently exploitable. Potential-based reward
shaping is a paradigm for augmenting it with additional feedback, notable for its attrac-
tive theoretical guarantees. However, it requires the additional feedback to be presented
through a specific abstraction, which may be cumbersome to obtain.
We devise a framework that allows one to provide the additional feedback in the natural

form directly, while maintaining the desired theoretical guarantees.
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Samenvatting

Een intelligente agent voert een actie uit. Precies één tijdstap later observeert de agent
de gevolgen van zijn actie. Hij ontvangt een feedbacksignaal van de omgeving en bevindt
zich in een nieuwe toestand. De agent kan dan zijn inschatting van de kwaliteit van
de genomen actie aanpassen, gebaseerd op deze nieuwe observaties en zijn bestaande
schattingen voor het uitvoeren van de actie. Het idee om een schatting aan te passen
op basis van andere inschattingen, komt in grote lijnen overeen met temporal difference
learning, mogelijk het meest fundamentele concept in modern reinforcement learning. Het
is een erg krachtig model dat opvallende gelijkenissen vertoond met de activiteit van
dopamine dragende neuronen in het menselijk brein. De naïeve computationele versie ervan
is echter eerder beperkt. In het bijzonder: een enkele primitieve tijdstap bevat onvoldoende
ervaring om verfijnd te leren. In dit proefschrift beschouwen we drie gerelateerde en deels
complementaire richtingen die elk tot doel hebben om deze enkele stap te verrijken.

Uitgebreide updates. In plaats van een enkele stap te gebruiken, is het informatiever
om meerdere stappen te beschouwen. Helaas ontstaan fundamentele problemen wanneer
dit proces gecombineerd wordt met off-policy leren, dat wil zeggen het leren over acties
verschillend van het huidig gedrag van de agent. We ontwikkelen een familie van originele
off-policy, meerstaps temporal difference algoritmen en analyseren hun convergentie. Deze
algoritmen zijn gebaseerd op het corrigeren van de waarde van off-policy acties, eerder
dan de conventionele kansruimte.
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Samenvatting

Uitgebreide acties. Beschouw al de individuele micro-acties die nodig zijn voor een
eenvoudige handeling als stappen. Toch zijn wij mensen in staat om al deze acties te
combineren in een enkele complexe actie. Naarmate de agent ervaring opdoet, moet
hij op gelijkaardige manier stijgen doorheen de actiehiëarchie. Het options raamwerk is
een algemeen model dat een dergelijke abstractie toelaat in het kader van reinforcement
learning. We leggen eerst een nieuw verband tussen options en meerstaps temporal dif-
ference plannen. We beschouwen dan een vernieuwende methode om discounting toe te
passen in de context van options en tonen aan dat deze methode voordelen biedt voor
zowel optimalisatie als representatie.

Uitgebreide feedback. Leren gebeurt zelden is een volledige geïsoleerde setting: wan-
neer we een nieuwe taak leren, verwerken we meerdere bronnen van feedback. Op dezelfde
manier kan in reinforcement learning de feedback uit de omgeving te schaars zijn om
efficiënt bruikbaar te zijn. Potentiaal gebaseerd reward shaping is een paradigma om
het feedbacksignaal te verrijken, dat opvalt door zijn aantrekkelijke theoretische garan-
ties. Deze methode vereist echter dat de extra feedback geleverd wordt via een specifieke
abstractie, die vaak onhandig in praktische toepassingen is. We ontwikkelen een nieuw
kader dat toelaat om de additionele feedback in een natuurlijke vorm te geven en toch de
theoretische garanties van de originele methode te behouden.

iv



Acknowledgments

I am deeply grateful to my advisor Ann Nowé for giving me the opportunity1 to spend
these last 4 years, 8 months and 15 days at the AI Lab, for her good spirits and her
confidence in me. Her ability to skillfully run the lab while still caring for its individuals
is remarkable, and maybe some day I will learn to multi-task as effectively as she does.
I am extremely thankful to my friend and co-advisor Peter Vrancx for his pragmatism,
for donating his blackboard to my doodles, and for many a game of Terra Mystica. I am
indebted to my jury members for their time invested into this thesis: Bruno Scherrer for his
careful proofreading, and for helping me iron out all of the technical kinks, Emma Brunskill
for her help in placing the work in a broader context, Bernard Manderick for the many
helpful suggestions, and in particular pointing out the Metropolis-Hastings connection of
Chapter 3, Ann Dooms for making sure my math was ok, and Wolf De Meuter for chairing,
and the practical perspective. Their input has improved this text immeasurably.
My PhD would have been very different if not for a few incredible opportunities, for

which I am very grateful. I would like to especially thank Doina Precup for hosting me
in 2014, and the later collaboration on the options chapters of the thesis – her intuitive,
yet precise approach is something I will always strive to replicate; DeepMind folks for the
fantastic environment during my internship in 2015, and Rémi Munos in particular, whom
I learnt a disproportionate amount from in the short time, for his patience and clarity of
thought. Finally, thanks to the many collaborators and friends made at conferences, and
in particular the crew at RL Barbados 2015 for the around-the-clock research excitement,
and that jug of rum punch at the beach.

1IWT-SBO project MIRAD, grant nr. 120057

v



Acknowledgments

I am grateful for the collaboration on the MIRAD project (Joris, Erwin, Friedl, Kevin,
Jonas, Amber, Stefan, Maarten and others) for offering a glimpse into the complexity of
robotics in the real world, and for always challenging my views with a different perspective
on learning.
I could not have wished for a nicer environment to spend the last few years in. (Although

perhaps not literally – I cannot say I am not glad to not have to test the heating system
for another winter.) Thanks to Tim, Timo, Roxana, Denis, Felipe, Pieter, Steven, Kristof,
Kevin, Maarten, Jelena, and many others for the fun reading groups, countless lunches,
and the occasional beer. A special thank you to Kirk for being the best listener, not letting
me drop my phone, and reminding me to enjoy the little (aka most important) things. I
am sorry for always sitting in your spot.
The path that led me to Belgium is extremely nonlinear, and I would like to mention

some of its critical nodes. I must thank Cora Borradaile for her infectious enthusiasm
about research, and for continuing to be an inspiration for being a positive change in the
world; Dan Watson for his good humor and his interest in my future; Dan Bryce whose
class on planning may have been one of the reasons I chose to do RL for my PhD; and the
Huntsman Foundation for providing me with the opportunity to move to the United States
at 17, marking perhaps the first step on my path with a large TD error. I am also grateful
for the remnants of the Soviet education system that instilled a passion for mathematics
and sciences in me, before I was old enough to learn that this is uncommon.
Despite the futility of the chance of them reading this, I want to thank my climbing

buddies (Ben, Rob, Oscar, Sebastian, Hans, Ruan, Ansie, Danouck, Timo, etc) for helping
me keep my sanity on the weekends, and many a soft catch. On many occasions I have
pondered how pushing for a deadline is similar to pushing through a crux move (in which
case writing this thesis has been the world’s least scenic big-wall climb).
I am incredibly fortunate to have one of the weirdest families. Thanks to my brother

Aram for tolerating my childhood affinity to emulate everything he did (including, later,
computer science); to my mother Zhanna for her unbridled enthusiasm for education and
discovery that she passed on to us from an early age; and to my father Robert for all
that he has done for our family, and for never passing up the opportunity of giving me
a good math puzzle.
I must also mention my other family, Ed and Jill Hershberg (as well as Susannah, Karina,

Sam, Celeste and Adira – the last two of whom are younger than this thesis!) A special
thank you to Ed for probably being the only person to willingly read (and reserve multiple
archival copies of) this document.
Finally, the last mention belongs to the person who always gets to see the flip-side, to

my dearest Ben. For always inspiring me with his enthusiasm, creativity and humbleness,
and for supporting me in all things big and small.

vi



Contents

Abstract i

Samenvatting iii

Acknowledgments v

Contents vii

Notation xviii

1 Introduction 1
1.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Question and Contributions . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Learning Off-Policy from Multiple Steps . . . . . . . . . . . . . . 4
1.2.2 Learning with Temporally Abstract Actions . . . . . . . . . . . . 5
1.2.3 Learning with Shaping Rewards . . . . . . . . . . . . . . . . . . . 6

1.3 Situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Policy Search Methods . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Model-Based Methods . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Organization of This Document . . . . . . . . . . . . . . . . . . . . . . . 9

vii



CONTENTS

2 Dynamic Programming and Reinforcement Learning 11
2.1 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Policies, Returns, and Value Functions . . . . . . . . . . . . . . . . . . . 13
2.3 Dynamic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Bellman Operators . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 λ-Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Iterative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 The Blueprint for Stochastic Approximation . . . . . . . . . . . . 22
2.4.2 Learning from Monte Carlo Returns . . . . . . . . . . . . . . . . 22
2.4.3 Learning from Temporal Differences . . . . . . . . . . . . . . . . 23
2.4.4 Off-Policy Learning and Exploration . . . . . . . . . . . . . . . . 24
2.4.5 λ-Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.6 Approximate State Spaces . . . . . . . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Off-Policy Learning with Corrections 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Naive Off-Policy Corrected Returns . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Algorithms: Qπ(λ) and Q∗(λ) . . . . . . . . . . . . . . . . . . . 32
3.2.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Survey of Multi-Step TD Algorithms . . . . . . . . . . . . . . . . . . . . 38
3.3.1 Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Safe and Efficient Off-Policy RL . . . . . . . . . . . . . . . . . . . . . . 45
3.4.1 Unified View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Retrace(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.3 Convergence Theorems . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



CONTENTS

3.5.1 Doubly Robust Off-Policy Policy Evaluation . . . . . . . . . . . . 55
3.5.2 Off-Policy Policy Gradient Methods . . . . . . . . . . . . . . . . 56
3.5.3 Connection with the Metropolis-Hastings Algorithm . . . . . . . . 57

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 From Multi-Step Temporal Differences to Options 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 State value function . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 The Options Framework . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Planning with Options as λ-Policy Iteration . . . . . . . . . . . . . . . . 64
4.3.1 λ-Policy Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 The Gated Options Operator . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Learning with Options that Terminate Off-Policy . . . . . . . . . . . . . 74
4.4.1 The Call-and-Return Operator . . . . . . . . . . . . . . . . . . . 74
4.4.2 Off-Policy Option Termination . . . . . . . . . . . . . . . . . . . 76
4.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.5 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Discounting Options 91
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2 Notation and Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3 Discounting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Horizon Length and Discounting . . . . . . . . . . . . . . . . . . 93
5.3.2 Options with Time Dilation . . . . . . . . . . . . . . . . . . . . . 94

5.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 The Bias-Variance Tradeoff in the Option Transition Model . . . . . . . . 98

5.5.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.5.2 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

ix



CONTENTS

5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.1 Bias-Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6.2 Horizon Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Potential-Based Shaping with Arbitrary Rewards 107
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Potential-Based Reward Shaping . . . . . . . . . . . . . . . . . . 108
6.2 Expressing Arbitrary Reward Functions as Potential-Based Advice . . . . 109

6.2.1 From Reward Functions to Dynamic Potentials . . . . . . . . . . 110
6.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Case Study: Advising Mario with Dynamic PBRS . . . . . . . . . . . . . 118
6.3.1 Setting and Method . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.2 Mario Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Conclusions 123
7.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1.1 Learning Longer Options . . . . . . . . . . . . . . . . . . . . . . 124
7.1.2 Distributing Time with Options . . . . . . . . . . . . . . . . . . . 124
7.1.3 Second-Order Discounting . . . . . . . . . . . . . . . . . . . . . 125
7.1.4 Shaping in Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.1.5 Formal Recommendations of Potential Functions . . . . . . . . . 126

Publications by the Author 127

A Proofs from Chapter 3 131
A.1 Proofs of Lemma 3.1 and Lemma 3.2 . . . . . . . . . . . . . . . . . . . 131
A.2 Proof of Theorems 3.1 and 3.2 . . . . . . . . . . . . . . . . . . . . . . . 132
A.3 Proof of Proposition 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

x



CONTENTS

A.5 Increasingly Greedy Policies . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.6 Proof of Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
A.7 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.8 Asymptotic Commutativity of Pπk and Pπk∧µk . . . . . . . . . . . . . . 142
A.9 Derivation of Eq. (3.4) . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B Proofs from Chapter 4 145
B.1 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
B.2 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
B.3 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
B.4 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
B.5 Proof of Corollary 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
B.6 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

C Proofs from Chapter 5 153
C.1 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
C.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
C.3 Proof of Lemma 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
C.4 Proof of Proposition 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

D Proofs from Chapter 6 161
D.1 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xi



CONTENTS

xii



List of Figures

2.1 The interaction loop between the agent and the environment in reinforce-
ment learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Left. Q∗(λ) on the Bicycle domain. The ’X’ marks the lowest value of
λ for which ε = 0.03 causes divergence. Right. The solid land indicates
the maximum non-diverging value of λ> The left-hand shaded region cor-
responds to our hypothesized bound. Parameter settings in the right-hand
shaded region do not produce meaningful policies. . . . . . . . . . . . . . 38

3.2 Backup diagram for Sarsa(λ) (from [Sutton and Barto 2017]). . . . . . . 39
3.3 Backup diagram for Tree-Backup(λ) (from [Sutton and Barto 2017]). . . 41
3.4 Inter-algorithm score distribution for λ-return (λ = 1) variants and Q-

Learning (λ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Average inter-algorithm scores for each value of λ. The DQN scores are

fixed across different λ, but the corresponding inter-algorithm scores vary
depending on the worst and best performer within each λ. Note that
average scores are not directly comparable across different values of
λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Left. Taxi domain. The agent navigates between the 4 target locations,
executing pickups and drop-offs. Right. The contraction factor ξ from
(4.13) in episodic Taxi as a function of βgoal and βin (average across the
10 VI steps, γ = 0.9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xiii



LIST OF FIGURES

4.2 Left. Summary performance, average of 10 independent runs. The curves
are roughly U-shaped, and in particular the best-performing βgoal is less
than one in all cases. Note the difference in y-axes. Right. Learning curves
for different values of βgoal with the best value of βin for each. The shaded
regions show standard deviation. . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The 19-state random walk task. The agent starts in the middle. Transitions
are deterministic, and the task terminates in each end. . . . . . . . . . . 83

4.4 Left: The modified cliffwalk task. Shaded regions are cliffs. Right: Pinball
domain configuration used. The red ball must be moved to the blue hole.
Each black diamond indicates an option landmark. . . . . . . . . . . . . 84

4.5 Prediction error on the 19-state chain task. Each variant is an average of
10 seeds. Left: Sum error for each β-ζ combination. Q(β) always gets
more efficient as β decreases (the options get longer). Right: Example
learning curves. The lines corresponding to ζ = 0.1 are outside the axes’
bounds. The shaded region covers standard deviation. . . . . . . . . . . . 85

4.6 Control performance on Cliffwalk. Each variant is evaluated on 5 seeds
for 10 runs each. Left: Average performance per value of ζ on all seeds.
Right: Learning curves for the best seeds per variant. Notice how Q(β)
is the only variant that escapes the plateau of the suboptimal policy. . . . 86

4.7 Control performance on Pinball. Each variant is evaluated on 20 indepen-
dent runs. Left: Influence of ζ and β on Q(β): performance improves as
β gets larger; intermediate target ζ-s are best. Right: Comparison within
the variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 The agent needs to choose between a closer, worse goal with a reward of
z and a farther, better goal with a reward of Z > z. The lines represent
the values of the left and right actions split at the agent’s location and
w.r.t. two different discounts. The outcome of the agent’s choice in the
current location thus depends on the discount: the red discounting scheme
of γenv = 0.95 is too short-sighted to prefer the correct goal Z. Note that
for any discount γenv < 1, the distances d and D can be proportionally
increased (to d+K and D+K for some K <∞) for γenv to be insufficient
to capture the correct ordering of the goals. . . . . . . . . . . . . . . . . 94

xiv



LIST OF FIGURES

5.2 The shape of the coefficients induced by different constant values of Γ
and γ for random option durations drawn from a Poisson distribution with
λ = 10. The spikes represent a new option choice, and are induced by the
fact that there is now discrepancy between the discounting in the transition
and reward models. The reward model remains unchanged and discounted
with γenv. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 BΓγ from Eq. (5.11) for dmax = 10 and different values of dmin. We see
that there is a decrease in variance near γ = 1. Note that the lower values
of γ corresponding to the other low-variance region may not be sufficient
to represent complex policies. . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 The domains used in our experiments. Left Four Rooms. The agent starts
in the top left room, and aims to navigate to G1 via options that navigate
to hallways. The option policies are ε-soft and extremely noisy with ε = 0.5.
Right Growing Gridworld. The agent’s task is to get from the start state
S to the goal G. There is another distractor goal g with a smaller reward. 102

5.5 The certainty equivalence loss − 1
|S|
∑
s v
∗
Γ̂γ

(s) as a function of γ and for
different values of Γ (lower is better). The reward model is known, the
transition model is estimated from N samples, and v∗

Γ̂γ
is obtained from

solving it. Average of 100 independent runs. Notice the similarity with
Fig. 5.3, which diminishes as N increases, since the effects of the variance
then diminish. The large error in the small γ-s on the other hand is due to
a large bias. Note the log scale, where we have biased the value at 1.0 to
be finite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 The certainty equivalence gain 1
|S|
∑
s v(s) as a function of the grid size

(higher is better). The value function v is the value w.r.t. a high γeval of
the optimal policies w.r.t. Left the exact model P oΓγ Right the approximate
model P̂ oΓγ . The shaded area denotes standard deviation. We compare two
variants: one with γ < 1,Γ = 1 (corresponding to the classical option
model), and the other with γ = 1,Γ < 1 (exploiting time dilation). The
reward model is computed with the same value of γenv < 1 for both cases.
We see that in both cases the performance of the variant γ < 1 deteriorates
with the size of the grid, while the variant with γ = 1,Γ < 1 is indifferent
to the size of the grid. Note that this pattern is irrespective of the chosen
value of γ and would occur for some grid size for any γ. . . . . . . . . . 104

xv



LIST OF FIGURES

6.1 Mean learning curves. Shaded areas correspond to the 95% confidence
intervals. The plot is smoothed by taking a running average of 10 episodes.
(a) The same reward function added directly to the base reward function
(non-PB advice) diverges from the optimal policy, whereas our automatic
translation to dynamic-PB advice accelerates learning significantly. (b) Our
dynamic (PB) VF advice learns to balance the pole the soonest, and has
the lowest variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 A screenshot from Mario executing the level used in the demonstration . 120

7.1 Second-order discounting coefficients for γ1 = 0.95. . . . . . . . . . . . . 125

xvi



List of Tables

3.1 Comparison of the update rules of several policy evaluation algorithms
using the λ-return: SARSA(λ), Expected SARSA(λ), General Q(λ), Per-
Decision Importance Sampling (PDIS) (λ), Tree-Backup (TB) (λ), and
Qπ(λ): in both on-policy (i.e. π = µ) and off-policy settings (π 6= µ).
Note the same Qπ(λ) equation applies in both settings. We write Qt =
q(St, At), EπQt = Eπq(St, ·), Ea6=bπ Qt =

∑
a∈A\b π(a|s)q(St, a). The FP

column denotes the stable point of each algorithm (i.e. the fixed point of
the expected update), given in red if there no proof of convergence to this
fixed point exists in literature. . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Comparison of the update rules of several control algorithms using the
λ-return: Watkins’s Q(λ), Peng and Williams’s Q(λ), and Q∗(λ). We
write Qt = q(St, At), Qmax

t = max q(St, ·), and GA(Qt) denotes the set
of greedy actions w.r.t. q at St. The FP column denotes the stable point
of these algorithms (i.e. the fixed point of the expected update), given in
red if there no proof of convergence to this fixed point exists in literature. 44

3.3 Properties of several algorithms in terms of the general operator U from
Eq. (3.17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvii



LIST OF TABLES

6.1 Cart-pole results. Performance is indicated with standard error. The final
performance refers to the last 10% of the run. Dynamic (PB) VF advice has
the highest mean, and lowest variance both in tuned and fixed γ scenarios,
and is the most robust, whereas myopic shaping proved to be especially
sensitive to the choice of γ. . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Points collected by Mario in the three considered scenarios (indicated with
standard error of the mean). The best (p < 0.05) performance is given in
bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xviii



Notation

We will generally follow the notation from [Sutton and Barto 2017], and use:

lower case to denote functions (e.g. q, v);
capital case to denote random variables (e.g. Rt+1);
calligraphic font to denote operators (e.g. T , R);
script font to denote sets (e.g. S, A).

S the set of states
A the set of actions
r(s, a) the (expected) reward upon taking the action a in state s
p(s′|s, a), pass′ the probability of transitioning into state s′ upon taking action a in state s
γ the discount factor
St state encountered at time t
At action taken at time t
Rt+1 ∼ r(St, At) the reward upon taking action At at state St
δt temporal difference error at time t
Gt the return generated from time t forward
G

(n)
t the n-step return generated from time t forward

xix



NOTATION

π (target) policy
µ behavior policy, or policy over options
pπ(s′|s) probability of ending up in s′ from s under a policy π
rπ(s) reward expected in state s under a policy π
λ eligibility trace parameter
Pπ one step transition operator for a policy π
T π Bellman operator for a policy π
T πλ Bellman λ-operator for a policy π
T Bellman optimality operator
q Q-function, Q-values, state-action value function
v V-function, V-values, state value function
qπ, vπ the Q-and V-values of policy π
q∗, v∗ optimal value functions
G(q) the set of greedy policies w.r.t. q
αk the step-size at phase k

O the set of options
πo policy of option o
βo (behavior) termination condition of option o
βo(s) probability of option o terminating in state s
Ro reward model of option o
P o transition model of option o
µ(o|s) probability of option o being selected in state s
κµ, κ the flat marginal policy for a policy over options µ
T µO Bellman operator over options for a policy µ
TO Bellman optimality operator over options
ζo target termination condition of option o

h potential function
f shaping reward

def= equal by definition
≡ notationally equivalent
‖ · ‖ supremum norm
1, e vector of one-components
0 vector of zero-components
I{a = b} indicator function that returns 1 if a = b and 0 otherwise
(xk)k∈N, (xk) sequence x0, x1, x2, . . .

xx



It’s not a human move. I’ve never seen a human play this move. So beautiful.
— Fan Hui, European Go champion, on the 37th move

of the second game between Lee Sedol and AlphaGo.

1 | Introduction
Artificial intelligence (AI) in one form or another is an idea that has pervaded the world’s
intellectual history, “a dream in urgent need of being realized” [McCorduck 2004], expressed
in humanity’s myths, legends, stories, speculation and clockwork automatons.
In the modern day we are surrounded by AI systems: in our phones, computers, and

devices. Our wish for these systems is to be able to learn from us: how to translate,
how to drive, how to make the perfect toast. In March of 2016 for maybe the first time,
the world witnessed an AI system that we could learn from. It was at a particular match
between a human and a machine. The match was in a game of Go, which has always
been a special challenge for AI due to its astronomical complexity. Any naive approach
is doomed here: there are more possibilities to compute than atoms in the universe.
AlphaGo [Silver et al. 2017], an AI system that learnt Go by playing itself countless
times, was playing Lee Sedol, one of the world’s best players. AlphaGo won: four to one,
against all expectations. The critical component that set it apart from its predecessors,
the mechanism of its self-improvement, was reinforcement learning. More victories and
remarkable improvements followed, but perhaps the most fascinating outcome has been
the revival in the Go community. The play of the AI was qualitatively different and provided
truly new insights into the ancient game [Tormanen 2017].
When the most complex board game is solved, the prized challenges evolve with it.

While the goal of having reinforcement learning systems provide insights into the important
problems of the real world: climate change, healthcare, education, is yet to be achieved,
the challenge has never seemed so feasible and inspiring.
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CHAPTER 1. INTRODUCTION

1.1 Reinforcement Learning

At the heart of dynamic programming (DP) is a recursion. In order to solve a problem,
one can often break it down into a small easy-to-solve subproblem and the remainder, for
which the procedure can be repeated. Originally intended for solving multi-stage stochastic
decision problems, this general idea behind Bellman’s principle of optimality, has proven
to be extremely powerful, and has become fundamental in theoretical computer science,
as well as many applied sciences [Dasgupta et al. 2008].
The goal of AI systems is to tackle large, complex problems. As powerful as the formalism

of DP is, in the context of AI, exact DP is an analytical, rather than practical framework.
This is because it requires accurate knowledge of the underlying dynamics, and suffers from
what Bellman called the “curse of dimensionality”, that is: the need for the computational
requirements to grow exponentially with the dimensions of the state.
Reinforcement learning (RL) can be thought of as the approximate, data-driven counter-

part to dynamic programming. It introduces the notion of an actor, an intelligent agent.
Where DP operates over the entire state space, RL places the agent in the state space.
Instead of assuming omniscience of the dynamics, the agent interacts with them in a
closed loop. Everything outside of the agent, including the dynamics, is assumed to be
the environment. Thus, the agent is able to act upon its environment, and perceive the
consequences of its actions.
The idea of an agent has been formally defined in many ways. At its core, it is nothing

but an algorithm that maps input state observations to output actions. By some defini-
tions, in order for an agent to be intelligent, it must have an internal representation that
evolves over time. It is these algorithms and representations that constitute reinforcement
learning research.

Definition 1.1: Components of RL

• An intelligent agent is an algorithm that maps input state observations to
output actions via an internal, evolving representation.

• An environment is the entity outside of the agent that includes a notion of
dynamics, and provides the agent with (possibly incomplete) state observations
and evaluative feedback.

The introduction of an agent relates RL to another discipline, of cognitive psychology.
The action-feedback loop with the environment can be thought of as a computational
formalism for trial-and-error learning. Although any learning system can be considered to
be trial-and-error – such as a supervised neural network that updates its beliefs about likely
outcomes after observing an example of a true outcome – the “error” in RL is principally
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1.2. RESEARCH QUESTION AND CONTRIBUTIONS

different: it contains evaluative feedback on an action rather than the underlying truth
about whether an action is correct. That is, instead of distinguishing if the action was
right or wrong like a supervised label would, the feedback in RL is a reward that denotes
how good the action was, with respect to some evaluation criteria. This is much more in
line with “pleasure-pain” theories from psychology (e.g. [Thorndike 1911]) and places RL
on a peculiar bridge between biological and machine learning.
That this is the case is particularly evident in the history of temporal difference (TD)

learning, one of the most important ideas of RL. Conceptually, TD learning is related to the
Bellman’s principle of optimality. But because of the approximate nature of RL, it amounts
to improving estimates based on the difference between the estimates at a current and
next time instances. Amazingly, such temporal difference errors are sufficient to learn the
task at hand. Many years after the introduction of the idea computationally, it was shown
experimentally that the form of the TD error is remarkably close to the mechanism of
activity of dopamine neurons in mammals [Montague et al. 1996], which in turn governs
a number of important cognitive processes in the brain.

1.2 Research Question and Contributions
The idea of TD learning is very general: learning from the difference of estimates at dif-
ferent times. Its single-step computational form however – prohibitively simple. An agent
performs an action, and exactly one time step later observes the environment feedback and
the next state, updates its belief about the quality of its course of actions (or a policy),
and is ready for the next action choice. This naive form is understandably limited. In
particular: a single time step experience is not sufficiently rich to learn with sophistication,
that is: learn about complex problems efficiently and responsibly. This foremost implies
being judicious with the environment interactions, since for any AI system to be safely de-
ployed in the real world it is essential for it to interact with its surroundings in an informed
careful manner. As such, we ask:

Research Question

How to enrich the basic temporal difference learning step to learn about complex
problems in a way that interacts with the environment responsibly, and utilizes each
interaction maximally?

This dissertation considers this question from three partially related and partially orthog-
onal directions:

• Learning off-policy from multiple steps for richer updates;
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CHAPTER 1. INTRODUCTION

• Temporal abstraction for richer actions; and
• Reward shaping for richer feedback.

The remainder of this section motivates these directions, each of which is an active area
research, and gives a high-level summary of our contributions in each direction.

1.2.1 Learning Off-Policy from Multiple Steps
A physical interaction loop is inherently single-stream: one can only be in a single place at
a given instance, take a single action. Yet, there is a multitude of diverse information that
can be learned from this single action. In reinforcement learning, an agent acts according
to some behavior, and this behavior is inherently unique. But in order to have scalable,
responsible learning systems, the agent must be able to learn about many possible facts and
ways to act that are not limited to the behavior alone. In order to so, the agent must learn
off-policy. An important example of learning off-policy is the problem of optimal control,
in which the agent must find the best course of actions while following an exploratory one.
Credit assignment is one of the key challenges of RL. Marvin Minsky in his seminal

“Steps Toward Artificial Intelligence” formulated what he called the basic credit-assignment
problem for complex reinforcement learning systems: How do you distribute credit for
success among the many decisions that may have been involved in producing it? [Minsky
1961] This problem becomes even more complex, when we consider off-policy learning.
How much should the outcome of the decision one took contribute to one’s understanding
of the outcomes of other potential decisions? The difficulty of answering this question is
further exacerbated when considering sequences of decisions.

Contributions
We consider the problem of off-policy learning from multiple steps in Chapter 3 and make
the following contributions:

• Off-policy credit assignment is typically done with importance sampling, which while
being precise, is infeasible for longer decision sequences. We investigate the necessity
of its precision, and formulate new algorithms and analysis for off-policy learning
without importance sampling, which reveals convergence up to a tradeoff between
how many decisions one considers and how off-policy one is.

• Based on the insights from that analysis, we attempt to combine the strengths of
the proposed algorithms with several existing ones. The result is a new algorithm,
Retrace(λ), that is able to efficiently handle multiple steps, while enjoying general
convergence guarantees even in the challenging off-policy control case.
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The material in Chapter 3 has been developed in close collaboration with my coau-
thors Marc G. Bellemare, Tom Stepleton, and especially Rémi Munos, who produced
the critical insights behind several of the key results.

1.2.2 Learning with Temporally Abstract Actions
Temporal abstraction enables one to escape the naive measure of a single time-step, and
interact with the environment at a variety of timescales, which is essential for learning
complex tasks. On the one hand, the wish for temporal abstraction builds on the long
history of modeling evolutions of physical systems over time. On the other, the idea that
reasoning and learning does or should function on multiple timescales has been prominent
in AI from early on (e.g. [Sacerdoti 1974]), and evident in psychology and neuroscience
more recently [Newell et al. 2001, Murray et al. 2014].
In RL, temporal abstraction is typically modeled through the options framework [Sutton

et al. 1999]. It is generally known that longer options result in faster learning. Typically,
choosing an option hands over control to it entirely. This introduces a subtle tradeoff: the
more one commits to an option, the faster the learning, but the less control one has over
its execution. Being able to learn about many possible option durations, while being fully
committed to the current one would make the benefits of options available, and remove
the reservation of using longer options.
Now let us consider option duration from another angle. One of the strengths of the

options framework is its seamless integration with classical TD. This strength comes at
a cost, however. Namely, regardless of how sophisticated the options may be, they are
anchored to some base notion of a time step. As such, and because the horizon of an agent
can only be finite in terms of this time step, if its measure is not sufficient to represent
complex tasks, the use of options will make no difference.

Contributions
We consider the problems of option durations and timescales outlined above in Chapters 4
and 5, and make the following contributions:

• In Chapter 4, we show that planning with options under a specific one-step model of
option execution is exactly equivalent to λ-policy iteration, a well-known multi-step
dynamic programming algorithm. This allows one to transfer analogous results with
ease.

• Guided by this connection between options and multi-step TD, we formulate and
analyze a new algorithm that allows one to learn option termination “off-policy”,
that is: irrespective of the actual terminating behavior of the options.
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• In Chapter 5 we take the reasoning about option durations a step further, and
analyze the role of the underlying timescale in options. We formulate a new option
discounting scheme that allows representing longer time horizons and introduces a
novel bias-variance tradeoff related to option duration.

1.2.3 Learning with Shaping Rewards
If one is to be confined to a single step, another alternative to enable learning with so-
phistication is to enrich, or shape the feedback itself that the step is to receive. Note that
where the previous two approaches augmented the agent, this one assumes augmenting
the environment, but it is up to the agent, to utilize the modification appropriately.
The term shaping in experimental psychology dates at least as far back as [Skinner 1938],

and refers to the idea of rewarding all behavior leading to the desired behavior, instead of
waiting for the subject to exhibit it autonomously. For example, Skinner discovered that,
the fastest way to train a rat to push a lever was to reward any movement in the direction
of the lever. Analogously, if any behavior of an RL agent leading to the desired behavior
is rewarded, learning occurs much faster. A peculiar caveat to this simple intuition is
that well-intentioned guidance may have adverse consequences. In the famous example
of an agent learning to ride a bicycle to a goal [Randløv and Alstrøm 1998], a shaping
reward was given every time the agent moved closer to the goal. But instead of learning
to quickly move to the goal and finish the task, the agent quickly learnt to ride around
the goal in circles and collect the associated positive reinforcements indefinitely. Similar
artifacts were recently discussed in the context of Atari games [OpenAI 2016], and are of
great importance when considering AI safety.
Potential-based reward shaping (PBRS) is a reward shaping framework in RL that guar-

antees that the original goal is kept in sight. It relies on being anchored to a potential
function which ensures that, as for a potential field in physics, the value of any cycle along
this potential function is zero, and there is nothing to exploit. The theoretical appeal of
PBRS is balanced with the need of obtaining the potential function, an extra abstraction.

Contributions
We consider the problem of PBRS with unconstrained shaping functions in Chapter 6, and
make the following contributions:

• We propose a new algorithm that converts an arbitrary shaping function into the
PBRS form, while maintaining the theoretical guarantees.

• We validate this algorithm on a case study of online sparse feedback in the Mario
domain, a difficult scenario to handle previously.
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1.3 Situation
One may ask, why focus on temporal difference learning in the first place? To answer this
question, let us provide some further exposition.1 TD learning is typically associated with
model-free action-value methods: ones that learn to evaluate the agent’s actions from
interaction, then infer and improve policies based on these values. In contrast, model-
free policy search methods learn policies directly, without the intermediate evaluation
step. Model-based methods use the interactive loop to estimate the dynamics of the
environment, then use dynamic programming for obtaining values or simulate trajectories
to optimize policies. We will discuss these method families briefly below, and motivate
why the impact of good TD algorithms extends to them as well.

1.3.1 Policy Search Methods
Direct policy search methods bypass the evaluation step, and learn to improve policies di-
rectly from interaction. These algorithms have distinctly different strengths and weaknesses
to those of action-value methods. On the plus side, it can be much simpler to learn what
to do (the policy), than exactly how good what is being done is (action-values), and an
explicit policy object provides more freedom to specialize in domain-specific policy classes.
Furthermore, policy search methods are better suited to deal with high-dimensional action
spaces, and are hence ubiquitous in robotic domains [Deisenroth et al. 2013]. However,
without the anchoring in values, ensuring optimality is more difficult – indeed like with
all gradient descent methods and evolution strategies, convergence is typically guaranteed
only to local optima. Furthermore, obtaining direct samples of the policy performance
requires long sequential interaction, which may incur high variance. A popular middle
ground is the actor-critic family of methods [Barto et al. 1983] that maintains values
in order to criticize the actor policy’s actions. The values can be used to either entirely
replace the samples, or as a baseline to mitigate the samples’ variance [Williams 1992].
As such, efficient and reliable estimation of action values, typically to be performed with
TD, is crucial to the success of many policy search methods.

1.3.2 Model-Based Methods
When the environment is not too vast, it can be much more effective to learn its model
from interaction, then obtain values and policies from this estimated model. Unfortunately,
it can be challenging to scale this process up to complex environments, since accurately
estimating the dynamics model can be intractable for a reasonable amount of interactions.

1An unfamiliar reader may choose to return to this section after Chapter 2 for better context.
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Partial models offer one way of addressing this limitation [Tamar et al. 2012, Jiang et al.
2015a]. This is one of the reasons we consider option models in Chapter 5.
Model-based methods follow the same split into action-value and policy search methods,

as model-free methods. Action-value methods typically perform dynamic programming
on the estimated models to obtain values [Brafman and Tennenholtz 2002], while policy
search methods use the models to generate simulated trajectories for the policy to learn
from [Deisenroth and Rasmussen 2011, Levine and Koltun 2013]. Many methods blend
model-based and model-free learning by having components of different types [Levine and
Koltun 2013]. There are also many methods that use models indirectly, or learn quantities
related to them. For example, the popular experience replay mechanism [Lin 1992, Mnih
et al. 2015] can be seen as an instance of planning with a non-parametric model [van
Seijen and Sutton 2015]. Successor features [Dayan 1993, Barreto et al. 2017] learn the
expected future cumulative features of a given policy, and can hence be used to produce
the value of that policy w.r.t. any reward function immediately. In all of these cases,
it is typically either true that the task of learning the model can be posed as a dynamic
programming problem, or one requires learning values alongside for stability.2
TD methods hence can be seen as fundamental building blocks that are impactful even

in seemingly orthogonal method families.

1.3.3 Criteria
Our focus throughout this thesis is the guaranteed convergence to the optimal solution,
and the asymptotic rate of that convergence.
One other important criteria is the number of interactions (or samples) required to find a

near-optimal solutions. This quantity is a fundamental formalization of learning efficiency
in learning theory [Valiant 1984]. In RL, its analysis is made more challenging in the
control setting by the coupling of the strategy used to generate samples to the object of
optimization itself. In some sense, asymptotic analysis bypasses this difficulty and considers
an idealized system. As such, results obtained in the asymptotic setting serve as a good
starting point for the more intricate analyses. There is a rich body of literature on sample
complexity analysis of RL algorithms (e.g. [Kearns and Singh 1999, Kakade 2003, Dann
and Brunskill 2015]) and it would be insightful to analyze the work presented in this thesis
from that viewpoint.
One may also consider the computational resources required by the learning algorithm.

Although it is generally assumed that environment samples are a scarcer resource than
computation, this is only true for physical environments, and as computational require-
ments of the algorithms scale, these considerations will become more pressing.

2One notable exception to this is the PILCO agorithm [Deisenroth and Rasmussen 2011].
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1.4 Organization of This Document
Key notation used throughout this document is summarized in the front matter. Chapter 2
presents a brief introduction to dynamic programming and reinforcement learning, covering
most of the necessary concepts for the remainder of the text. The technical introductions
to the more advanced topics of options and shaping are reserved until their corresponding
chapters: Sections 4.2.2 and 6.1.1, respectively. Chapters 3 through 6 present the key
contributions of this thesis. The results are presented in a logical, rather than chronological
order, and for example the earliest results on shaping are presented last. We defer all of
the proofs to the appendices to make the narrative and discussions prominent. Chapter 7
concludes the thesis and outlines several directions for future work. Finally, a summary
of peer-reviewed and pending publications that underpin each chapter is presented in the
back matter.
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2 | Dynamic Programming and
Reinforcement Learning

This chapter will give a short technical introduction to dynamic programming and rein-
forcement learning. We will first introduce the basics of dynamic programming, preview
convergence results and solution methods. We will then introduce reinforcement learning,
the data-driven counterpart to DP, discuss some of its key concepts, and present the basic
temporal difference algorithm from first principles of stochastic approximation.

2.1 Markov Decision Processes

The Markov Decision Process (MDP) [Bellman 1957b] framework crystalizes the chal-
lenge of sequential decision making. Consider a sequence of experience S0, A0, S1, A1,

S2, A2, . . . of states and actions in the environment. The Markov property assumes that
the dependencies in this sequence are first-order only:

Pr(St+1|St, At, St−1, At−1, . . . , S0, A0︸ ︷︷ ︸
Ft

) = Pr(St+1|St, At).

That is, each state St+1 is independent of the history Ft−1
def= S0, A0, . . . , St−1, At−1, up

to the immediately preceding state-action pair St, At. The algorithms developed under
this simple assumption have transferred to less ideal settings remarkably well.
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Figure 2.1: The interaction loop between the agent and the environment in
reinforcement learning

Definition 2.1: Markov Decision Process

An MDP is a tuple M = (S,A, p, r, γ), where:

• S is the (possibly infinite) set of states
• A is the (possibly infinite) set of actions
• p : S × A × S → [0, 1] is the transition function that specifies environment
dynamics, with p(s′ | s, a) denoting the probability of transitioning to state s′
upon taking action a in state s

• r : S×A→ R is the (possibly probabilistic) reward function
• γ ∈ [0, 1] is the scalar discount factor that determines the planning horizon of
the agent.

The agent interacts with this environment as follows: at each of a sequence of discrete
time steps t = 0, 1, 2, . . ., the agent observes the current state of the environment St ∈ S

and selects an action At ∈ A. The clock ticks, the agent receives a numerical reward
Rt+1 ∼ r(St, At) and finds oneself in a new state St+1 ∼ p(·|St, At).

Scope: Environment

In this thesis we will always assume that the set of actions is discrete and finite, and
the reward function is bounded ‖r‖∞ ≤ rmax. We will always be concerned with the
discounted setting, in which γ < 1. All of the theoretical results in this thesis are
for finite state spaces, but the experiments will often involve function approximation,
which we will cover briefly in Section 2.4.6.

12
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2.2 Policies, Returns, and Value Functions
The agent always thinks forward. At a given time t, in an infinite horizon setting, a funda-
mental quantity of interest is the return. Given the experience stream St, At, Rt+1, St+1,

At+1, Rt+2, . . ., the return of this experience is defined as follows:

Gt
def=
∞∑
i=t

γi−tRi+1. (2.1)

That is: Gt is the future discounted cumulative reward from time t. Equation (2.1) reveals
the role of discounting: how does a reward now compare to a reward later? The discounted
formulation also allows one to bound Gt easily:

|Gt| ≤
1

1− γ rmax, (2.2)

The rule with which an agent selects actions is called a policy, and is often denoted by π.
Loosely speaking, a policy that collects the most rewards is called optimal. In the MDP
setting it is known that an optimal policy does not need a memory and may only depend
on the current state. Furthermore, it is known that to be optimal over an infinite horizon
(in the sense of the infinite sum formulation of Gt from (2.1)), a policy can be stationary,
and not depend on the time that a state was encountered [Puterman 1994]. The agent,
hence, may focus its attention to that restricted policy class.

Definition 2.2: Policy

A (memoryless, stationary) policy π : S×A→ [0, 1] is a probabilistic mapping from
states to actions, with π(a | s) denoting the probability of the agent taking action a
upon observing state s.

If the actions are chosen with some policy π, the return Gt provides a sample of π’s
long-term quality. Indeed, the value of a policy is defined as the expected return obtained
when following it:

qπ(s, a) def= ESt+1:∞
At+1:∞

[ ∞∑
i=t

γi−tRi+1︸ ︷︷ ︸
Gt

|St = s,At = a;π
]
, (2.3)

This expectation is implicitly conditioned on the environment dynamics p: each Si+1 ∼
p(·|Si, Ai) (while each Ai ∼ π(·|Si)). Importantly, because both the policy and the

13
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dynamics are stationary, this expectation is independent of time t. Eq, (2.3) describes
an action-value function. One may also be interested in the overall value of the state,
which is defined in a natural way:

vπ(s) def= ESt+1:∞
At:∞

[ ∞∑
i=t

γi−tRi+1|St = s, π
]

=
∑
a∈A

π(a|s)qπ(s, a) (2.4)

These functions are typically referred to as state-action value functions / Q-values / Q-
functions and state value functions / V-values / V-functions, respectively.
Reinforcement learning and dynamic programming are either concerned with evaluating a

given policy π, or, in a control setting, with finding the best such policy. We can now make
this notion of optimality precise. Let Π denote the space of all mappings S×A→ [0, 1].
The optimal value functions are defined as follows:

v∗(s) def= max
π∈Π

vπ(s) = max
a∈A

q∗(s, a) def= max
a∈A

max
π∈Π

qπ(s, a) (2.5)

In the following, we will simply write maxπ to imply maximization over the space of policies
Π. Finally, the optimal policy π∗ can be readily inferred from these value functions due to
the fact that there always exists an optimal deterministic stationary policy π∗, for which
vπ
∗ = v∗ [Puterman 1994, Bertsekas and Tsitsiklis 1996].1

Definition 2.3: Problems

Policy evaluation. How good is a given policy π? What is its value vπ?

Control. What is the best policy π∗? What π∗ is of maximum value maxπ vπ?

2.3 Dynamic Programming
At the heart of any usage of the term dynamic programming is a recursion: decomposing
the solution to the problem into a simple small piece, and the “rest”. The Markov property
lends the value function to this type of a decomposition naturally:

qπ(s, a) = ESt+1:∞
At+1:∞

[ ∞∑
i=t

γi−tRi+1 | St = s,At = a;π
]

1That such π∗ exists for all states requires deliberation: why wouldn’t there be several policies that
are optimal only in some states? The intuition for why this is not the case is that since policies are
memoryless, they can always be composed. If π is optimal in s and π′ in s′, one may simply obtain π∗ by
following these policies in their respective states. A similar argument can be made for why there is a π∗
that is deterministic: if a policy is stochastic over actions, a deterministic one that chooses the action of
the higher value will achieve an overall higher reward, and hence there is no reason for the randomization.

14
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= ESt+1:∞
At+1:∞

[
Rt+1 + γ

∞∑
i=t+1

γi−t−1Ri+1 |St = s,At = a;π
]

= r(s, a) + γ
∑
s′∈S

p(s′ | s, a)ESt+2:∞
At+1:∞

[ ∞∑
i=t+1

γi−t−1Ri+1 |St+1 = s′;π
]

︸ ︷︷ ︸
vπ(s′)

(2.6)

= r(s, a) + γ
∑
s′∈S

p(s′ | s, a)
∑
a′∈A

π(a′ | s′)qπ(s′, a′). (2.7)

This is the Bellman equation [Bellman 1957a] for a policy (2.7), but w.r.t. the optimal
policy π∗:

q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′|s, a) max
a′∈A

q∗(s′, a′). (2.8)

This equation is based on Bellman’s principle of optimality (Def. 2.4), which has become
fundamental more broadly in computer science, since its original formulation for decision
making. The intuition to why it is especially significant in RL has to do with the fact
that while value functions are complex objects that measure future rewards, the first term
r(s, a) is the immediate one-step reward. It is thus readily available for sampling when
learning from simulation, which is the setting we will consider in Section 2.4.

Definition 2.4: Bellman’s Principle of Optimality

An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision. [Bellman 1957a], Chap. III.3.

The basis of most DP solution methods lies in the fact that iterating an approximate
form of (2.8) and (2.7) results in convergence to the desired value. Namely, consider an
arbitrary Q-function q and a target policy π. The update that applies the following rule
to all state-action pairs s, a:

qt+1(s, a)← r(s, a) + γ
∑
s′∈S

p(s′ | s, a)
∑
a′∈A

π(a′|s′)qt(s′, a′) (2.9)

yields qt → qπ, as t → ∞, almost surely. The following section will detail the reasons
behind this.

15



CHAPTER 2. DYNAMIC PROGRAMMING AND REINFORCEMENT LEARNING

Remark 2.1: Connection between Q- and V-functions

We can use the relationship of Eq. (2.6) to make a more precise connection between
Q- and V-functions. In particular, consider an MDP M = (S,A, p, r, γ), and an
enhanced MDP M′π = (S+,A, p+, r, γ) containing all of the states of M, as well as
a state for each s, a tuple: S+ = S ∪ {s, a}s∈S,a∈A. The transitions from the new
states are then made according to the original MDP, while, a state s transitions to
the state s, a according to the policy probability: p+(s, a|s) = π(a|s), p+(s′|s, a) =
p(s′|s, a),∀s, s′ ∈ S, a ∈ A. Then, Equations (2.6) and (2.7) can be seen as one-
and two-step Bellman equations for M′π, respectively.

2.3.1 Bellman Operators
In this section we will review some of the fundamentals at the basis of convergence of
dynamic programming algorithms.
Many operations in DP apply transformations onto the value function object, and it is

therefore convenient to think of them as operators. Consider the Q-function q as a mapping
S × A → R. An operator X over Q-functions then takes a function q : S × A → R and
maps it to a function over the same domain and range, X q : S × A → R. First let us
consider a one-step transition operator over Q-functions. Given a policy π, define Pπ
as the following:

Pπq(s, a) def=
∑
s′∈S

∑
a′∈A

p(s′ | s, a)π(a′ | s′)q(s′, a′). (2.10)

Recall the problems from Def. 2.3, and let us expose the case of policy evaluation in detail.

2.3.2 Policy Evaluation
Let us write the one-step Bellman operator [Bellman 1957a] for a policy π, that corresponds
to applying the update from Eq. (2.9) to all state-action pairs:

T πq def= r + γPπq. (2.11)

The fixed point of an operator is the value of its argument function at which applications
of the operator incur no further change.
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Definition 2.5: Fixed point

A function f is said to be a fixed point of an operator X , if Xf = f .

For example, if we let D be the differentiation operator, the function ex is its fixed point:
Dex = ex. The Bellman equation (2.7) tells us that qπ is the fixed point of the Bell-
man operator:

T πqπ = qπ =
∞∑
t=0

γt(Pπ)tr = (I − γPπ)−1r, (2.12)

where for any operator X , X t denotes t successive applications of X , and the last equality
is a standard result for stochastic operators and matrices [Kemény and Snell 1960]. This
solution can be computed exactly if the state space is not too large. The key strength of
DP is that when that is not the case, iterative methods, based on repeated applications
of T π converge to qπ.
So far, we only know that qπ is a fixed point of T π, but we do not know whether it

is unique, and whether we can find it. The answer to both of these questions is in the
affirmative, due to the fact that T π is a contracting operator: it maps two Q-functions
closer together with respect to some metric.

Definition 2.6: Contraction

An operator X over a metric space (Q, d) is a contraction if ∃η ∈ [0, 1), s.t.
d(X q,X z) ≤ ηd(q, z), ∀q, z ∈ Q.

As the metric, we will consider the maximum `∞-norm:

‖q − z‖∞
def= max
s∈S,a∈A

|q(s, a)− z(s, a)|, q, z ∈ Q.

To verify that T π is indeed a contraction, first let us verify that the space of Q-functions
Q together with the maximum `∞-norm is a metric space. Since Q is a vector space,2
combining it with any norm gives a normed vector space, which in turn is a metric space.
It is then easy to verify that T π obeys the required inequality w.r.t. the maximum norm:

‖T πq1 − T πq2‖∞ = ‖r + γPπq1 − r − γPπq2‖∞
= γ‖Pπq1 − Pπq2‖∞

2This is because Q-functions are defined as arbitrary candidate mappings q : S× A → R, rather than
necessarily values qπ of some policy π.
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= γ‖Pπ(q1 − q2)‖∞
(∗)
≤ γ‖q1 − q2‖∞.

where (∗) is due to ‖Pπx‖∞ ≤ ‖x‖∞ for any vector x, which follows from the defini-
tion (2.10). Thus, for discounted problems, where γ < 1, T π is a contraction of modulus γ.
Finally, we will need the notion of a Banach space: a normed vector space that is

complete. Intuitively, for a metric space to be complete means that it does not contain any
“holes”. Slightly more precisely, it is the requirement for a limit of a sequence of elements
from the space to be contained in the space. Bounded continuous-valued functions can
be shown to be complete, and therefore the space of value functions Q with the `∞-norm
is a Banach space, if value functions are bounded.

Assumption 2.1: Bounded Values

The value function is bounded: ‖q‖∞ < +∞.

Note that when the reward function is bounded, as we assume in this thesis, this assumption
is easily satisfied in the discounted case via Eq. (2.2).
The following theorem is at the basis of many principal convergence results in dynamic

programming.

Theorem 2.1: Banach Contraction Mapping Theorem

A contraction map X on a Banach space B has a unique fixed point. Furthermore,the
sequence b,X b,X 2b, . . . converges to that unique fixed point, ∀b ∈ B.

Thus, if Assumption 2.1 holds, qπ is indeed the unique fixed point of T π, and repeated
applications of T π are guaranteed to yield it. It is easy to see that the contraction condition
implies a worst-case geometric rate of convergence. In our case:

‖(T π)nq − qπ‖ ≤ γ‖(T π)n−1q − qπ‖ ≤ γ2‖(T π)n−2q − qπ‖ ≤ . . . ≤ γn‖q − qπ‖.

This relation reveals the crucial importance of the discounting rate γ on the convergence
rate of DP algorithms: the larger the γ, the slower the convergence.
Note that Theorem 2.1 applies independently of the initial q. A weaker condition can

be devised for monotone (but non-contracting) sequences: if their fixed point is unique
and they are bounded, they converge to this fixed point. This result is sometimes invoked
in the control setting.
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2.3.3 Control
Recall that in the control setting we are interested in finding the policy of maximum value
q∗ = maxπ qπ, which corresponds to the Bellman optimality operator:

T q def= r + γmax
π
Pπq. (2.13)

The optimal value function q∗ is the fixed point of this operator, as stated by the Bellman
optimality equation (2.8):

T q∗ = q∗. (2.14)

Similarly to T π, T is a contraction around this fixed point w.r.t. the `∞-norm:

‖T q1 − T q2‖∞ = ‖r + γmax
π
Pπq1 − r − γmax

π
Pπq2‖∞

= γ‖max
π
Pπq1 −max

π
Pπq2‖∞

≤ γ‖max
π
Pπ(q1 − q2)‖∞

≤ γ‖q1 − q2‖∞.

Therefore, Theorem 2.1 implies convergence once again, now to q∗.
Finally, note that iterating T is subtly different from iterating T π, since the underlying

policy depends on the approximation q. That is: at each step we consider our best current
guess for an optimal policy, the policy that would be optimal if the value function were
correct. Such a policy is called greedy, and simply corresponds to choosing the action of
maximum value in each state. We write

G(q) def= {π |π(a | s) > 0⇒ q(s, a) = max
a′∈A

q(s, a′)}

to denote the set of greedy policies w.r.t. q. That is: T q = T πq for any π ∈ G(q).

2.3.4 λ-Operators
Clearly, the Bellman equation holds for any number of applications of T π:

qπ = T πqπ = T π(T πqπ) = T π(T π(T πqπ)) = . . . = (T π)nqπ = . . . , ∀n ∈ N.

All of the convergence properties carry over, and one may use the repeated n-step operator
(T π)n to converge to qπ. This reduces the number of iterations required for convergence,
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but makes each iteration more involved (e.g. [Bertsekas and Tsitsiklis 1996]). In particular,
n applications of T π induce n reward models, followed by the value function:

(T π)nq =
n∑
t=0

(γPπ)tr + (γPπ)n+1q. (2.15)

The choice of n has dramatic influence on efficiency and its best choice is problem-specific.
A more flexible form of multi-step operators can be obtained by considering a geometrically
weighted sum of the n-step operators:

T πλ
def= (1− λ)

∞∑
n=0

λn((T π)n+1q). (2.16)

Naturally, qπ remains the fixed point of T πλ . Taking λ = 0 yields the usual single-step
Bellman operator T π, and λ→ 1 corresponds to an infinite number of applications of T π,
which in turn corresponds to the closed form solution from Eq. (2.12).

2.3.5 Iterative Algorithms
Finally, let us formalize the so far implicit algorithms based on iterating T π and T . In all
cases we consider iterations k = 0, 1, 2, . . ., and q0 initialized arbitrarily.
Following our taxonomy of problems from Def. 2.3, consider first the problem of evalu-

ating a given policy π. If the state space is small, we may simply obtain the value of qπ
from Eq. (2.12). Of course, in many problems of interest, this is intractable, and we may
have to reach the solution iteratively, that is: by maintaining a sequence of value functions
(qk)k∈N. The Bellman operator T π is the operator underlying iterative policy evaluation:

qk+1 ← T πqk. (2.17)

Now consider the problem of control. Here, we consider a sequence of value functions
(qk)k∈N and their corresponding greedy policies (πk)k∈N. If the state space is small, we
may compute the value of each πk exactly, and perform policy iteration (PI). That is:
starting from the arbitrary values q0, we may at each iteration k evaluate this policy in
closed form via Eq. (2.12), and try to improve on it by devising a new policy:

πk+1 ← arg max
π

qk−1 (2.18)

qk+1 = (I − γPπk+1)−1r,

If the state space is large, we may wish to bypass the task of exactly evaluating the
intermediate policies (πk), and focus on improving the estimates (qk) directly, performing
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value iteration (VI):

qk+1 ← T qk. (2.19)

Noticing that, for the given greedy policy, VI takes one evaluation step, while PI cor-
responds to taking infinitely many evaluation steps, it is natural to imagine the middle
ground between them. Namely, modified policy iteration [Puterman and Shin 1978] takes
m evaluation steps, and λ-policy iteration further blends the m-steps via the T πλ operator
from Eq. (2.16) [Bertsekas and Ioffe 1996]. We discuss this latter algorithm in detail
in Chapter 4.
The convergence of all of these algorithms is guaranteed by Theorem 2.1. We have so far

considered them in the synchronous setting: with the updates being applied to all states
and actions at once in a single iteration. In online learning, whether prediction or control,
the updates ought to be applied to sequentially sampled transitions. Luckily, it is known
that convergence holds in such an asynchronous setting as well, under reasonable condi-
tions. This theory, originally developed for processing the state space in parallel [Bertsekas
1982], was first related to the online learning setting by [Barto et al. 1995] and has been
crucial for the theory of modern RL and the algorithms we are about to discuss.

2.4 Reinforcement Learning
The previous section briefly introduced the fundamentals of dynamic programming, and the
ability of iterating T and T π to produce accurate Q-functions. The resulting algorithms,
value and policy iteration, however, require access to the models r and p. Approximate
dynamic programming, or reinforcement learning, is distinguished by the assumption that
these models are not available a priori, but are sampled, that is: the agent interacts
with a simulation of the MDP. We will continue considering action-value, or value-based
algorithms, in which the agent’s goal is to learn value functions.3 Depending on the
targets of estimation from the obtained samples, value-based solution methods fall into
two categories.

Definition 2.7: Value-based RL Algorithms

Model-based approaches use samples to estimate the models r and p, and obtain
the desired value functions by applying DP algorithms with these approximate
models.

3The alternative is policy search methods, discussed in Section 1.3.1.
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Model-free approaches use samples to estimate the desired value functions directly,
without maintaining approximate models.

We will start from first principles of stochastic approximation, and briefly introduce a naive
model-based framework. We will then move to describing temporal difference learning, as
an instance of a model-free algorithm.

2.4.1 The Blueprint for Stochastic Approximation
Consider a task of estimating an expectation x from samples of the corresponding ran-
dom variable (Xk)k∈N. By the law of large numbers, this expectation can be estimated
iteratively by taking a mixture of the independent samples (Xk)k∈N:

x̂k+1 ← (1− αk)x̂k + αkXk, (2.20)

where αk is the step-size.4 This basic procedure is at the heart of many stochastic ap-
proximation algorithms. Indeed, if the sequence of step-sizes (αk)k∈N is appropriately
decreasing, the sequence (x̂k)k∈N converges to x almost surely, as k → ∞ [Robbins and
Monro 1951]. A minimal requirement for the step-sizes to be appropriately decreasing is
formalized in the following assumption.

Assumption 2.2: Robbins-Monro

The sequence of step-sizes (αk)k∈N satisfies:

∞∑
k=0

αk =∞ and
∞∑
k=0

α2
k <∞.

The simplest way to perform model-based RL is to use this procedure to estimate p and r,
and perform value or policy iteration with the models p̂ and r̂ approximated along the way.
There are much more sophisticated model-based methods (e.g. [Brafman and Tennenholtz
2002]), but we limit our discussion to the model-free scope of this thesis.

2.4.2 Learning from Monte Carlo Returns
The term Monte Carlo simply refers to the principle of estimating an expectation via
an average of random samples, or rollouts (e.g. [Michie and Chambers 1968]). As such,
Eq. (2.20) can also be interpreted as an incrementalMonte Carlo procedure of estimating x.

4E.g., if αk = 1
k
, Eq. (2.20) describes the empirical mean.
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In (value-based) RL, the goal is to estimate a value function qπ, or q∗. Let us consider
the case of policy evaluation. The difficulty of applying the update (2.20) is in obtaining
an unbiased sample qk(s, a) of qπ for each state-action pair. The simplest way of doing
so is to use the complete return Gπk (s, a), where Gπk (s, a) denotes the return G0 from
Eq. (2.1) w.r.t. kth sample of an experience stream s, a,R1, S1, A1, R2, . . ., Ai ∼ π(·|Si):

Gπk (s, a) def=
∞∑
t=0

γtRt+1.

This is exactly analogous to the above description of Monte-Carlo estimation, as Gπk (s, a)
is an unbiased sample of qπ(s, a), and hence the update for each state and action pair is
exactly analogous to the Monte Carlo update of Eq. (2.20):

qk+1(s, a)← (1− αk)qk(s, a) + αkG
π
k (s, a). (2.21)

There are some subtleties that arise due to the sequential nature of this process. In
particular, if one is to encounter the pair s, a again along the trajectory, does one simply
ignore it? Or make another update? The former approach is referred to as first visit Monte
Carlo, while the latter is referred to as every visit. Given limited samples, the every visit
approach is more savvy, and is often preferred in practice. While its analysis is slightly more
involved, convergence results can be obtained for both variants [Singh and Sutton 1996].
Unfortunately, the variance of the multi-step returns Gπk involved in this computation,

can be very high. Furthermore, in the infinite horizon setting, one must wait indefinitely
for each Gπk . This is where the Bellman equation proves extremely useful.

2.4.3 Learning from Temporal Differences
Given an estimate qk of the Q-function, and a short sample experience s, a,Rt+1, St+1, At+1,
consider replacing Gπk (s, a) with Ĝπk (s, a) def= Rt+1 + γqk(St+1, At+1), or in other words,
only sampling the immediate reward, and relying on the current approximation for the
remainder:

qk+1(s, a)← (1− αk)qk(s, a) + αkĜπk (s, a)
= (1− αk)qk(s, a) + αk(Rt+1 + γqk(St+1, At+1))
= qk(s, a) + αk (Rt+1 + γqk(St+1, At+1)− qk(s, a))︸ ︷︷ ︸

TD error δt

. (2.22)

This update is at the basis of temporal difference learning [Sutton 1988]. The quan-
tity δt is referred to as the temporal difference (TD) error, due to the difference of
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the estimates Rt+1 + qk(St+1, At+1) of a future time step and the estimate qk(s, a) =
qk(St, At) of the current time step. When (qk) has converged to the value of the policy
π that is used to sample At, the expected value of the TD error becomes 0. Indeed,
Eπ [Rt+1 + γqπ(St+1, At+1)− qπ(s, a)] = 0, due to the Bellman equation.
The convergence conditions for this process are surprisingly unrestrictive: convergence is

guaranteed if the step-sizes obey Assumption 2.2, which is indeed the minimal requirement
for stochastic approximation convergence in general, and if all states and actions are visited
sufficiently often, which can be formalized via the following assumption.5

Assumption 2.3: Minimum visit frequency

For any trajectory S0, A0, S1, A1, . . ., and any state action pair s ∈ S, a ∈ A, there
exists a constant D, s.t.:

∞∑
t=0

Pr{St, At = s, a} ≥ D > 0.

2.4.4 Off-Policy Learning and Exploration
Consider the snippet of experience s, a,Rt+1, St+1, a

′ used as an input to all of the proce-
dures above. Importantly, the following action a′ is not limited to the taken action At+1.
In fact, the choice of it directly determines the limit of convergence of the update. If a′
is indeed the next sample At+1, the problem is that of policy evaluation, the algorithm
is SARSA [Rummery and Niranjan 1994] (aptly named after the snippet of experience
s, a,Rt+1, St+1, a

′), and the convergence is to qπ, where π is the policy used to sample
At+1. If a′ on the other hand is the greedy action at St+1 w.r.t. q, the problem is that of
control, the algorithm is Watkins’s Q-Learning [Watkins 1989], and the convergence is to
q∗. This brings us directly up to a key dimension in RL: learning on- or off-policy.

Definition 2.8: Off-Policy Learning

Learning is said to be off-policy when samples generated by a behavior policy µ are
used to learn about a distinct target policy π. If µ = π, the learning is on-policy.

Policy evaluation can be either on- or off-policy, while control is almost always off-policy.6

5This assumption is equivalent to the standard requirement of all states being visited infinitely often,
but we will find this form convenient in the analysis of Chapter 3.

6An exception is the class of optimal stopping problems [Puterman 1994].
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The scenario of online sampling introduces a unique challenge for control in RL: how to
ensure that all states and actions are visited sufficiently often? One simple way is to behave
w.r.t. a fixed random policy, but this may not lead one to the interesting parts of the state
space in a reasonable amount of time (though it will in the limit of infinite time). The
other extreme is to follow the agent’s best, greedy guess of the optimal policy, but then
convergence indeed cannot be ensured, since there is the risk of missing an even better
policy. This is known as the exploration-exploitation tradeoff, and is among the most
fundamental problems in RL (e.g. [Thrun 1992]). A simple approach often adopted in
practice is using ε-greedy policies, that is: ones that take the greedy action w.p. 1− ε and
a random action w.p. ε. This simple strategy has been surprisingly effective (e.g. [Mnih
et al. 2015]), but many more sophisticated approaches exist that are necessary for the
more challenging settings (e.g. [Bellemare et al. 2016]).

2.4.5 λ-Returns
Just like when considering expected operators from the previous section, in the case of
learning from simulation one need not update with (or back up) a single step, and may
instead consider multiple steps from the sampled trajectory s, a,R1, S1, A1, R2, . . .. Then,
the n-step return Gπn(s, a) is a sample of (T π)n, and the λ-return Gπλ is a sample of T πλ :

Gπn(s, a) def=
n∑
k=1

γk−1Rt+k + γnq(Sn, An),

Gπλ(s, a) def= (1− λ)
∞∑
n=0

λnGπn+1(s, a), (2.23)

where S0, A0 = s, a, as before. That is: λ = 0 corresponds to the one-step TD update
from (2.22), and λ→ 1 removes the recursion on the approximate Q-function, and restores
Gπ in the Monte Carlo sense. In this case, of samples, the computational expense of
applying multi-step operators is replaced by an increase in variance of sampling multi-
step returns. Indeed, λ trades off this variance with the bias from bootstrapping with
an approximate Q-function [Kearns and Singh 2000], and intermediate values of λ thus
usually perform best in practice [Sutton 1996, Singh and Dayan 1998].
From the specification of Gπλ in (2.23), the update w.r.t. to it seems to require being

carried out offline: after the reward stream has terminated. In the absence of a finite
horizon, this is as infeasible as plain Monte Carlo estimation. Luckily, there is a mechanism
to efficiently implement the update online, called eligibility traces [Sutton and Barto 2017].
Let e denote the vector of such traces, and consider the following update at time t:

e(s, a)← λγe(s, a) + I{(St, At) = (s, a)}, ∀s ∈ S, a ∈ A. (2.24)
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Like with Monte Carlo updating, there is a choice between every-visit and first-visit up-
dating of the eligibility trace. The equation above is given in the more practical every-visit
form, which we will assume throughout. It has recently been argued that the update
(2.24) is subtly flawed. [van Seijen and Sutton 2014] showed it does not in fact yield exact
equivalence to the offline case, and proposed a true online mechanism that does, allowing
it to produce more stable estimates.
The parameter λ is commonly highlighted in the algorithm name. Thus, for example,

Eq. (2.21) describes SARSA(1), Eq. (2.22) SARSA(0), and an algorithm that updates
its estimates with Gπλ is referred to as SARSA(λ). In the policy evaluation setting, in
particular when estimating V-values, this algorithm is also known as TD(λ).

Scope: Algorithms

The majority of the thesis will be concerned with model-free temporal difference
methods. The two exceptions are the first part of Chapter 4 whose focus is exact dy-
namic programming, and Chapter 5 which considers model-based RL, or approximate
dynamic programming, where the models are estimated from samples.

2.4.6 Approximate State Spaces
Everything up to this point has assumed a discrete, finite state space. In most practical
settings, the state space is continuous or too large to be represented exactly, and one
needs to resort to approximation. The value function is then represented through a set of
features φ. All of the same principles apply, but the Q-function qθ becomes parameterized
by a parameter vector θ, and the algorithms apply their updates to θ directly.
For example, if the approximation is linear, the Q-function is obtained by a linear com-

bination of θ with φ:

qθ(s, a) = θTφs,a,

and given an experience s, a,Rt+1, St+1, At+1, the update (2.22) becomes:

θk+1 ← θk + αk(Rt+1 + γθTk φSt+1,At+1 − θTk φs,a).

Tile coding is one simple and surprisingly effective example of a linear function approxi-
mation scheme [Sutton and Barto 2017].
The approximation can also be performed via a neural network, in which case the Q-

function is obtained as the output of the network on an input of a state observation.
This setting is particularly powerful, because the features φ are then not fixed a priori,
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but learnt in the context of the task. This framework of deep RL has led to remarkable
successes in the last years [Mnih et al. 2015, Silver et al. 2017], and has awakened a
new wave of RL research.

2.5 Summary
We have briefly introduced the key ideas from dynamic programming and reinforcement
learning. The next chapter will pick up almost exactly where we leave off and consider
the problem of learning off-policy from λ-returns.
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If it was so, it might be; and if it were so, it would be; but as it isn’t, it ain’t.
— Lewis Carroll, Alice’s Adventures in Wonderland and Through the

Looking-Glass.

3 | Off-Policy Learning with
Corrections

The ability to learn about counterfactuals and ask “what if?” questions is essential, but
has been (perhaps unsurprisingly) elusive to perform efficiently. One of the fundamental
questions involved is: How does one measure the similarity of the current experience with
the experience one wishes to learn about? How close must these experiences be in order
for any learning to occur? After all, it seems futile to expect an ability to learn how to
swim while walking. The difficulty of answering this question is compounded with the
lengths of the experiences.
Reinforcement learning, following suit of stochastic approximation, traditionally answers

this question with the help of the importance sampling ratio of the probabilities of the
involved policies. In this chapter we challenge the necessity of doing this exactly, and
advocate using the value function as another approximate similarity signal.
We first investigate a naive implementation of the idea: what happens when the difference

in policies is unaccounted for entirely? The answer to this question substantiates an old
algorithm, and yields a new one. Taking a step back, we formulate a unified view of
the existing landscape, and describe a novel algorithm that in some sense combines the
best of all worlds.
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3.1 Introduction
The usual approach to off-policy learning is to disregard, or altogether discard transitions
whose target policy probabilities are low. For example, Watkins’s Q(λ) [Watkins and
Dayan 1992] cuts the trajectory backup as soon as a non-greedy action is encountered.
Similarly, in policy evaluation, importance sampling methods [Precup et al. 2000] weight
the returns according to the mismatch in the target and behavior probabilities of the
corresponding actions. This approach treats transitions conservatively, and hence may
unnecessarily terminate backups, or introduce a large amount of variance.
Many off-policy methods, in particular of the Monte Carlo kind, have no other option

than to judge off-policy actions in the probability sense. However, temporal difference
methods [Sutton 1988] in RL maintain an approximation of the value function along the
way, with eligiblity traces [Watkins 1989] providing a continuous link between one-step
and Monte Carlo approaches. The value function assesses actions in terms of the future
expected cumulative reward, and thus provides a way to directly correct immediate rewards,
rather than transitions. We show in this chapter that:

• such approximate corrections alone can be sufficient for off-policy convergence, sub-
ject to a tradeoff condition between the eligibility trace parameter and the distance
between the target and behavior policies.

• the corrections, combined with an approximate, truncated importance sampling ratio
yield guaranteed convergence for arbitrary target and behavior policies.

In particular, we propose an off-policy return operator that augments the return with a
correction term, based on the current approximation of the Q-function. We formalize three
algorithms stemming from this operator, and analyze their convergence, which we show
holds subject to a certain tradeoff between the return “length” λ and the off-policy-ness
of the behavior.1
We take a step back in Section 3.3 and review several related off-policy return-based

algorithms. Expressing them in a general common form, we analyze the convergence
properties of this general form. We then motivate and derive an improved online algorithm,
Retrace(λ), which is both safe (that is: enjoys general convergence guarantees for any λ
and any amount of off-policy-ness), and efficient (that is: able to learn quickly by maximally
utilizing the returns). As a corollary to our analysis, the first proof of convergence of
Watkins’ Q(λ) follows.

1The exploration parameter ε from the familiar ε-greedy exploration is an example of off-policy-ness in
this context.
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3.2 Naive Off-Policy Corrected Returns
In this section, we consider a naive form of our idea, in which the difference in policy
probabilities is unaccounted for entirely, and all of the corrections are performed through
the value function. We will see that even this scenario can yield convergence, but it is
subject to a certain tradeoff.

3.2.1 Operators
Let us describe the Monte Carlo off-policy corrected return operator Rπ,µ that is at the
heart of the algorithms to follow. Given a target policy π, and a return generated by a
behavior policy µ, the operator Rπ,µ attempts to approximate a return that would have
been generated by π, by utilizing a correction built from a current approximation q of qπ.
Its application to q at a state-action pair (s, a) is defined as follows:

Rπ,µq(s, a) def= r(s, a) + Eµ
[ ∞∑
t=1

γt
(
Rt+1 + Eπq(St, ·)− q(St, At)︸ ︷︷ ︸

off-policy correction

)]
, (3.1)

where we use the shorthand

Eπq(s, ·) ≡
∑
a∈A

π(a|s)q(s, a),

while Eµ [·] denotes the expectation ES1:∞
A1:∞

[·] of a trajectory drawn w.r.t. a policy µ. That
is: Rπ,µ gives the usual expected discounted sum of future rewards, but each reward in
the trajectory is augmented with an off-policy correction, which we define as the difference
between the expected (with respect to the target policy) Q-value and the Q-value for
the taken action. Thus, how much a reward is corrected is determined by both the
approximation q, and the target policy probabilities. Notice that if actions are similarly
valued, the correction will have little effect, and learning will be roughly on-policy, but if the
Q-function has converged to the correct estimates qπ, the correction takes the immediate
reward Rt+1 to the expected reward with respect to π exactly. Indeed, as we will see later,
qπ is the fixed point of Rπ,µ for any behavior policy µ.
Analogously to Eqs. (2.15) and (2.16), we can consider the n-step2 and λ versions

of Rπ,µ:

Rπ,µn q(s, a) def= r(s, a) + Eµ

[
n∑
t=1

γt
(
Rt+1 + Eπq(St, ·)− q(St, At)

)
+ γn+1Eπq(Sn+1, ·)

]
,

2The bootstrapping term Eπq(Sn+1, ·) is considered as an expectation for symmetry that will be
convenient later.
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Rπ,µλ q
def= (1− λ)

∞∑
n=0

λn[Rπ,µn ], (3.2)

Note that the λ parameter here takes us from SARSA(0) to the Monte Carlo version of
our operator Rπ,µ, rather than the traditional Monte Carlo form (2.12).

Algorithm 1 Q(λ) with off-policy corrections

Given: Initial Q-function q0, step-sizes (αk)k∈N
for k = 1, . . . do

Sample a trajectory S0, A0, R0, . . . , STk from µk
qk+1(s, a)← qk(s, a) ∀s, a
e(s, a)← 0 ∀s, a
for t = 0, . . . , Tk − 1 do
δπkt ← Rt+1 + γEπkqk+1(St+1, ·)− qk+1(St, At)
for all s ∈ S, a ∈ A do
e(s, a)← λγe(s, a) + I{(St, At) = (s, a)}
qk+1(s, a)← qk+1(s, a) + αkδ

πk
t e(s, a)

end for
end for

end for

On-policy Qπ(λ): µk = πk = π.
Off-policy Qπ(λ): µk 6= πk = π.
Q∗(λ): πk ∈ G(qk).

3.2.2 Algorithms: Qπ(λ) and Q∗(λ)
Recall that we are considering the problems of off-policy policy evaluation and off-policy
control (Def. 2.3). In both problems we are given data generated by a sequence of behavior
policies (µk)k∈N. Our algorithm constructs a sequence (qk)k∈N of estimates of qπk from
trajectories sampled from µk, by applying the Rπk,µkλ -operator:

qk+1 = Rπk,µkλ qk, (3.3)

where πk is the kth interim target policy. We distinguish between three algorithms and
associated operators:

Off-policy Qπ(λ) for policy evaluation: πk = π is the fixed target policy. We write the
corresponding operator Rπλ.
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On-policy Qπ(λ) for policy evaluation: for the special case of µk = µ = π.

Q∗(λ) for off-policy control: (πk)k∈N is a sequence of greedy policies with respect to
qk. We write the corresponding operator R∗λ.

We wish to write the update (3.3) in terms of a simulated trajectory S0, A0, R1, . . . , STk
drawn according to µk. First, notice that we can rewrite Eq. (3.2) in the following form:3

Rπ,µλ q(s, a) = q(s, a) + Eµ
[ ∞∑
t=0

(λγ)tδπt
]
, (3.4)

δπt
def= Rt+1 + γEπq(St+1, ·)− q(St, At),

where δπt is the expected TD-error. The forward view of the update is then written:

qk+1(s, a)← qk(s, a) + αk

Tk∑
t=0

(γλ)tδπkt , (3.5)

where Tk is the random variable corresponding to the length of the kth trajectory. While
(3.5) resembles many existing TD(λ) algorithms, it subtly differs from all of them, due to
Rπ,µλ (rather than T πλ ) being at its basis. Section 3.3 discusses the distinctions in detail.
The every visit form of Eq. (3.5) is written:

qk+1(s, a)← qk(s, a) + αk

Tk∑
t=0

δπkt

t∑
i=0

(γλ)t−iI{(Si, Ai) = (s, a)}, (3.6)

and the corresponding backward view, or the online form, of all three algorithms is sum-
marized in Algorithm 1. The following theorem states that when µ and π are sufficiently
close, the off-policy Qπ(λ) algorithm converges to its fixed point qπ.

Theorem 3.1

Consider the sequence of Q-functions computed according to Algorithm 1 with fixed
policies µ and π. Let ε = maxs ‖π(·|s) − µ(·|s)‖1. If λε < 1−γ

γ , then under the
same conditions required for the convergence of TD(λ) (Assumptions 2.2, 2.3, 3.1)
we have, almost surely:

lim
k→∞

qk(s, a) = qπ(s, a).

We state a similar, albeit weaker result for Q∗(λ).
3The derivation can be found in Appendix A.9
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Theorem 3.2

Consider the sequence of Q-functions computed according to Algorithm 1 with πk
the greedy policy with respect to qk. If λ < 1−γ

2γ , then under the same conditions
required for the convergence of TD(λ) (Assumptions 2.2, 2.3, 3.1) we have, almost
surely:

lim
k→∞

qk(s, a) = q∗(s, a).

The proofs of these theorems rely on showing that Rπλ and R∗λ are contractions under
the stated conditions, and invoking classical stochastic approximation convergence to their
fixed point (such as Proposition 4.5 from [Bertsekas and Tsitsiklis 1996]). We will focus
on the contraction lemmas, which are the crux of the proofs, then outline the sketch of
the online convergence argument.

Discussion

Theorem 3.1 states that for any λ ∈ [0, 1] there exists some degree of “off-policy-ness”
ε < 1−γ

λγ under which qk converges to qπ. This is the λ−ε tradeoff for the off-policy Qπ(λ)
learning algorithm for policy evaluation. In the control case, the result of Theorem 3.2
is weaker as it only holds for values of λ smaller than 1−γ

2γ . Notice that this threshold
corresponds to the policy evaluation case for ε = 2 (arbitrary off-policy-ness). We were
not able to prove convergence to q∗ for any λ ∈ [0, 1] and some ε > 0.
The main technical difficulty lies in the fact that in control, the greedy policy with respect

to the current qk may change drastically from one step to the next, while qk itself changes
incrementally (under small learning steps αk). So the current qk may not offer a good
off-policy correction to evaluate the new greedy policy. In order to circumvent this problem
we may want to use slowly changing target policies πk. For example we could keep πk
fixed for slowly increasing periods of time. This can be seen as a form of optimistic policy
iteration [Puterman 1994] where policy improvement steps alternate with approximate
policy evaluation steps (and when the policy is fixed, Theorem 3.1 guarantees convergence
to the value function of that policy).
The algorithm introduced in Section 3.4.2 overcomes these difficulties and enjoys general

convergence guarantees by incorporating an approximate importance sampling ratio in
the update.
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3.2.3 Convergence Analysis
We begin by verifying that the fixed points of Rπλ andR∗λ, that is: the instances of R

π,µ
λ in

the policy evaluation and control settings, are qπ and q∗, respectively. We then prove the
contractive properties of these operators: Rπλ is always a contraction and will converge to
its fixed point, R∗λ is a contraction for particular choices of λ (given in terms of γ). The
contraction coefficients depend on λ, γ, and ε: the distance between policies. Finally, we
give a proof sketch for online convergence of Algorithm 1.
Before we begin, it will be convenient to rewrite Eq. (3.1) for all state-action pairs:

Rπ,µq = r +
∞∑
t=1

γt(Pµ)t−1[Pµr + Pπq − Pµq].

We can then express Rπλ and R∗λ from Eq. (3.2) as follows:

Rπλq
def= q + (I − λγPµ)−1[T πq − q], (3.7)

R∗λq
def= q + (I − λγPµ)−1[T q − q]. (3.8)

It is not surprising that the above along with the Bellman equations (2.12) and (2.14)
directly yields that qπ and q∗ are the fixed points of Rπλ and R∗λ:

Rπλqπ = qπ, R∗λq∗ = q∗.

It then remains to analyze the behavior of Rπ,µλ as it gets iterated.

λ-return for policy evaluation: Qπ(λ)

We first consider the case with a fixed arbitrary policy π. For simplicity, we take µ to
be fixed as well, but the same will hold for any sequence (µk)k∈N, as long as each µk
is no more off-policy than µ.

Lemma 3.1

Consider the policy evaluation algorithm qk = (Rπλ)kq0. Assume the behavior policy
µ is ε-away from the target policy π, in the sense that maxs ‖π(·|s) − µ(·|s)‖1 ≤
ε. Then for ε < 1−γ

λγ , the sequence (qk)k∈N converges to qπ exponentially fast:
‖qk − qπ‖ = O(ηk), where η = γ

1−λγ (1− λ+ λε) < 1.
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λ-return for control: Q∗(λ)

We next consider the case where the kth target policy πk is greedy with respect to the
value estimate qk. The following lemma states that is possible to select a small, but
nonzero λ and still guarantee convergence.

Lemma 3.2

Consider the off-policy control algorithm qk = (R∗λ)kq0. Then

‖R∗λqk − q∗‖ ≤
γ + λγ

1− λγ ‖qk − q
∗‖,

and for λ < 1−γ
2γ the sequence (qk)k∈N converges to q∗ exponentially fast.

Online Convergence

The online convergence of all three algorithm encompassed in Algorithm 1 is proven equiv-
alently, given the conditions of Lemmas 3.2 and 3.1 hold, along with some assumptions
required for the online setting.

Assumption 3.1: Finite trajectories

For every sample trajectory τk: EµkT 2
k <∞, where Tk is the length of τk.

Assumption 3.1 requires trajectories to be finite w.p. 1, which is satisfied by e.g. proper be-
havior policies. Equivalently, we may require from the MDP that all trajectories eventually
reach a zero-value absorbing state We show that Algorithm 1 converges under Assump-
tion 3.1, together with the standard assumptions 2.2 and 2.3. The proof (in Appendix A.2)
closely follows that of Proposition 5.2 from [Bertsekas and Tsitsiklis 1996], and requires
rewriting the update in the suitable form, and verifying Assumptions (a) through (d) from
their Proposition 4.5.

3.2.4 Experiments
Although we do not have a proof of the λ− ε tradeoff (see the discussion in Section 3.2.2)
in the control case, we wished to investigate whether such a tradeoff can be observed
experimentally. To this end, we applied Q∗(λ) to the Bicycle domain [Randløv and Alstrøm
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1998]. Our main interest is in the interplay between the λ parameter in Q∗(λ) and the ε
parameter from an ε-greedy exploration policy. We report three findings:

1. Higher values of λ lead to improved learning;

2. Very low values of ε exhibit lower performance; and

3. The Q-function diverges when λ is high relative to ε.

Together, these findings suggest that there is indeed a λ − ε tradeoff in the control case
as well, and suggest that with proper care it can be beneficial to do off-policy control with
Q∗(λ), thus confirming the intuition that such naive Q(λ) is “not as naive as one might
at first suppose” [Sutton and Barto 1998].

Domain description and Experimental Details

In the Bicycle domain, the agent must simultaneously balance a simulated bicycle and drive
it to a goal position. Six real-valued variables describe the state – angle, velocity, etc. –
of the bicycle. The reward function is proportional to the angle to the goal, and gives -1
for falling and +1 for reaching the goal. The discount factor is 0.99. The Q-function was
approximated using multilinear interpolation over a uniform grid of size 10× · · ·× 10, and
the stepsize was tuned to 0.1 from a parameter sweep. Each configuration is reported as
an average of five independent trials. Our main performance indicator is the frequency at
which the goal is reached by the greedy policy after 500,000 episodes of training.

Results

Learning speed and performance Figure 3.1 (left) depicts the performance of Q∗(λ),
in terms of the goal-reaching frequency, for three values of ε. The agent performs best
(p < 0.05) for ε ∈ [0.003, 0.03] and high (w.r.t. ε) values of λ.

Divergence For each value of ε, we determined the highest safe choice of λ which did
not result in divergence. As Figure 3.1 (right) illustrates, there is a marked decrease in
what a safe value of λ is as ε increases. Note the left-hand shaded region corresponding
to the policy evaluation bound 1−γ

γε . Supporting our hypothesis on the true bound on λ
(Section 3.2.3), it is clear that the maximum safe value of λ depends on ε. In particular,
notice how λ = 1 stops diverging exactly where predicted by this bound.
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Average End Performance

✏ = 0

✏ = 0.003

✏ = 0.03

Maximum Non-diverging �

Figure 3.1: Left. Q∗(λ) on the Bicycle domain. The ’X’ marks the lowest value of λ for
which ε = 0.03 causes divergence. Right. The solid land indicates the maximum

non-diverging value of λ> The left-hand shaded region corresponds to our hypothesized
bound. Parameter settings in the right-hand shaded region do not produce meaningful

policies.

3.2.5 Discussion
In control, determining the existence of a non-trivial ε-dependent bound for λ remains
an open problem. Supported by telling empirical results in the Bicycle domain, we hy-
pothesize that such a bound exists, and closely resembles the 1−γ

γε bound from the policy
evaluation case.

3.3 Survey of Multi-Step TD Algorithms
In this section, we take a step back and place the presented algorithms in context of the
existing work in TD(λ), focusing in particular on action-value methods. Casting them
in this common framework will in particular set the stage for our next contribution, the
unified multi-step off-policy operator, and Retrace(λ), the improved algorithm.
As usual, let S0, A0, R1, . . . be a trajectory generated by following a behavior policy
µ, i.e. At ∼ µ(·|St). At time i, SARSA(λ) [Rummery and Niranjan 1994] updates its
Q-function as follows:

q(Si, Ai)← q(Si, Ai) + αi((1− λ)
∞∑
n=0

λnG
(n+1)
i − q(Si, Ai)︸ ︷︷ ︸

∆i

), (3.9)
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Figure 3.2: Backup diagram for Sarsa(λ) (from [Sutton and Barto 2017]).

G
(n)
i =

i+n∑
t=i

γt−iRt+1 + γn+1qk(Si+n+1, Ai+n+1), (3.10)

where ∆i denotes the update made at time i, G(n)
i is the n-step return from time i

onwards. ∆i can be rewritten in terms of one-step TD-errors as follows:

∆i =
∞∑
t=i

(λγ)t−iδt, (3.11)

δt = Rt+1 + γq(St+1, At+1)− q(St, At).

SARSA(λ) is an on-policy algorithm and converges to the value function qµ of the behavior
policy. Below we will discuss the different algorithms that arise by instantiating G(n)

i or
∆i from Eq. (3.9) differently. Tables 3.1 and 3.2 provide the full details, while in text we
will specify the most revealing components of the updates.
Before we proceed, let us introduce the concept of a backup as an instrumental image of

thinking about multi-step algorithms. The update in Eq. (3.9) is an example of a backup
equation, since we propagate the information from the states and actions S1, A1, S2, A2 . . .

back to S0, A0. The backup diagram for SARSA(λ) is given in Fig. 3.2.
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3.3.1 Policy Evaluation
One can imagine considering expectations over action-values at the corresponding states
Eπq(St, ·) ≡

∑
a π(a|St)q(St, a), in place of the value of the sampled action q(St, At), i.e.:

δt = Rt+1 + γEπq(St+1, ·)− Eπq(St, ·). (3.12)

This is the one-step update for General Q-Learning [van Hasselt 2011], which is a general-
ization of Expected SARSA [van Seijen et al. 2009] to arbitrary policies. We refer to the
direct eligibility trace extensions of these algorithms formed via Equations (3.9)-(3.11) by
General Q(λ) and Expected SARSA(λ) (first mentioned by [Sutton et al. 2014]) Unfor-
tunately, in an off-policy setting, General Q(λ) will not converge to the value function qπ
of the target policy, as stated by the following proposition.

Proposition 3.1

The stable point of General Q(λ) is qµ,π = (I − λγ(Pµ − Pπ)− γPπ)−1r which is
the fixed point of the operator (1− λ)T π + λT µ.

Alternatively to replacing both terms with an expectation, one may only replace the value
at the next state St+1 by Eπq(St+1, ·), obtaining:

δπt = Rt+1 + γEπq(St+1, ·)− q(St, At). (3.13)

This is exactly our policy evaluation algorithm Qπ(λ). In particular, when π = µ, we get
the on-policy Qπ(λ). The induced on-policy correction may serve as a variance reduction
term for Expected SARSA(λ) (it may be helpful to refer to the n-step return in Table 3.1
to observe this), but we leave variance analysis of this algorithm for future work. When
π 6= µ, we recover off-policy Qπ(λ), which (under the stated conditions) converges to qπ.

Target Policy Probability Methods:

The algorithms above directly descend from basic SARSA(λ), but often learning off-policy
requires special treatment. For example, a typical off-policy technique is importance sam-
pling (IS) [Precup et al. 2001]. It is a classical Monte Carlo method that allows one to
sample from the available distribution, but obtain (unbiased or consistent) samples of the
desired one, by reweighing the samples with their likelihood ratio according to the two
distributions. For a behavior policy µ and a target policy π, this yields at time t:

ρt
def= π(At|St)
µ(At|St)

. (3.14)
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Figure 3.3: Backup diagram for Tree-Backup(λ) (from [Sutton and Barto 2017]).

In order for ρ to be well-defined, it is generally assumed that π(a|s) =⇒ µ(a|s), or, in
order to avoid the coupling of the policies, simply that µ(a|s) > 0,∀s,∈ S, a ∈ A. The
updates for the ordinary per-decision IS algorithm for policy evaluation are then made
as follows:

∆i =
∞∑
t=i

(λγ)t−iδt
t∏

j=i+1
ρj ,

δt = Rt+1 + γρt+1q(St+1, At+1)− q(St, At).

This family of algorithms converges to qπ with probability 1, under any soft, stationary
behavior µ [Precup et al. 2000].
However, off-policy Qπ(λ) is perhaps related closest to the Tree-Backup (TB) algorithm,

also discussed by [Precup et al. 2000]. Its one-step TD-error is the same as (3.13),
the algorithms back up the same tree (Fig. 3.3), and neither requires knowledge of the
behavior policy µ. The important difference is in the weighting of the updates. As an
off-policy precaution, TB(λ) weighs updates along a trajectory with the cumulative target
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probability of that trajectory up until that point:

∆i =
∞∑
t=i

(λγ)t−iδπt
t∏

j=i+1
π(Aj |Sj). (3.15)

The weighting simplifies the convergence argument, allowing TB(λ) to converge to qπ
without further restrictions on the distance between µ and π [Precup et al. 2000]. The
drawback of TB(λ) is that in the case of near on-policy-ness (when µ is close to π) the
product of the probabilities cuts the traces unnecessarily (especially when the policies are
stochastic). What we have shown in this chapter, is that plain TD-learning can converge
off-policy without policy probability corrections, subject to a tradeoff condition on λ and
ε. Under that condition, Qπ(λ) applies both on- and off-policy, without modifications.
An ideal algorithm should be able to automatically cut the traces (like TB(λ)) in case of
extreme off-policy-ness while reverting to Qπ(λ) when being near on-policy.

3.3.2 Control
Perhaps the most popular version of Q(λ) is due to [Watkins and Dayan 1992]. Off-policy,
it truncates the return and bootstraps as soon as the behavior policy takes a non-greedy
action, as described by the following update:

∆i =
i+k∑
t=i

(λγ)t−iδt, (3.16)

where k = arg min
u≥1

Ai+u /∈ GA(Qi+u) is the first time when the behavior policy takes a

non-greedy action, and where GA(Qi) denotes the set of greedy actions w.r.t. q at state
Si. Note that this update is a special case of (3.15) for deterministic greedy policies,
with

∏t
j=i+1Aj ∈ GA(Qj) replacing the probability product. When the policies µ and π

are not too similar, and λ is not too small, the truncation may greatly reduce the benefit
of complex backups.
Q(λ) of [Peng and Williams 1996] is meant to remedy this, by being a hybrid between

SARSA(λ) and Watkins’s Q(λ). Its n-step return
∑i+n
t=i γ

t−iRt+1+γn+1 max q(Si+n+1, ·)
admits the following form of the TD-error:

δt = Rt+1 + γmax q(St+1, ·)−max q(St, ·).

This is, in fact, the same update rule as the General Q(λ) defined in Eq. (3.12), where
π is the greedy policy. Following the same steps as in the proof of Proposition 3.1, the

42



3.3. SURVEY OF MULTI-STEP TD ALGORITHMS

Table 3.1: Comparison of the update rules of several policy evaluation algorithms using
the λ-return: SARSA(λ), Expected SARSA(λ), General Q(λ), Per-Decision Importance
Sampling (PDIS) (λ), Tree-Backup (TB) (λ), and Qπ(λ): in both on-policy (i.e. π = µ)
and off-policy settings (π 6= µ). Note the same Qπ(λ) equation applies in both settings.
We write Qt = q(St, At), EπQt = Eπq(St, ·), Ea6=bπ Qt =

∑
a∈A\b π(a|s)q(St, a). The

FP column denotes the stable point of each algorithm (i.e. the fixed point of the
expected update), given in red if there no proof of convergence to this fixed point exists

in literature.

Algorithm n-step return Update rule for the λ-return FP

TD(λ)
i+n∑
t=i

γt−iRt+1+
∞∑
t=i

(λγ)t−iδt vµ

(on-policy) γn+1Vi+n+1 δt = Rt+1 + γVt+1 − Vt

SARSA(λ)
i+n∑
t=i

γt−iRt+1+
∞∑
t=i

(λγ)t−iδt qµ

(on-policy) γn+1Qi+n+1 δt = Rt+1 + γQt+1 −Qt

E SARSA(λ)
i+n∑
t=i

γt−iRt+1+
∞∑
t=i

(λγ)t−iδt + EµQi −Qi qµ

(on-policy) γn+1EµQi+n+1 δt = Rt+1 + γEµQt+1 − EµQt

General Q(λ)
i+n∑
t=i

γt−iRt+1+
∞∑
t=i

(λγ)t−iδt + EπQi −Qi qµ,π

(off-policy) γn+1EπQi+n+1 δt = Rt+1 + γEπQt+1 − EπQt

PDIS(λ)
i+n∑
t=i

γt−iRt+1
t∏

j=i+1
ρj+

∞∑
t=i

(λγ)t−iδt
t∏

j=i+1
ρj qπ

(off-policy) γn+1Qi+n+1
i+n+1∏
j=i+1

ρj δt = Rt+1 + γρt+1Qt+1 −Qt

TB(λ)
i+n∑
t=i

γt−i
t∏

j=i+1
πj

∞∑
t=i

(λγ)t−iδt
t∏

j=i+1
πj qπ

(off-policy)
[
Rt+1 + γEa 6=At+1

π Qt+1
]
+ δt = Rt+1 + γEπQt+1 −Qt

γn+1
i+n+1∏
j=i+1

πjQi+n+1

Qπ(λ)
i+n∑
t=i

γt−i
[
Rt+1+

∞∑
t=i

(λγ)t−iδt qπ

(on-policy EπQt −Qt
]
+ δt = Rt+1 + γEπQt+1 −Qt

/off-policy) γn+1EπQi+n+1
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Table 3.2: Comparison of the update rules of several control algorithms using the
λ-return: Watkins’s Q(λ), Peng and Williams’s Q(λ), and Q∗(λ). We write

Qt = q(St, At), Qmax
t = max q(St, ·), and GA(Qt) denotes the set of greedy actions

w.r.t. q at St. The FP column denotes the stable point of these algorithms (i.e. the
fixed point of the expected update), given in red if there no proof of convergence to this

fixed point exists in literature.

Algorithm n-step return Update rule with λ-returns FP

Q(λ)
i+n∑
t=i

γt−iRt+1 + γn+1Qmax
i+n+1

i+k∑
t=i

(λγ)t−iδt q∗

(Watkins’s) n < k = arg min
u≥1

Au /∈ GA(Qu) δt = Rt+1 + γQmax
t+1 −Qt

Q(λ)
i+n∑
t=i

γt−iRt+1 + γn+1Qmax
i+n+1

i+n∑
t=i

(λγ)t−iδt +Qmax
i −Qi qµ,∗

(P & W’s) δt = Rt+1 + γQmax
t+1 −Qmax

t

Q∗(λ)
i+n∑
t=i

γt−i
[
Rt+1 +Qmax

t −Qt
] ∞∑

t=i
(λγ)t−iδt q∗

+γn+1Qmax
i+n+1 δt = Rt+1 + γQmax

t+1 −Qt

limit of this algorithm (if it does indeed converge) will be the fixed point of the operator
(1 − λ)T + λT µ which is different from q∗ unless the behavior is always greedy.
[Sutton and Barto 1998] mention another, naive version of Watkins’s Q(λ) that does

not cut the trace on non-greedy actions. That is exactly the Q∗(λ) algorithm described
earlier in this chapter. Notice that despite the similarity to Watkins’s Q(λ), the equiva-
lence representation for Q∗(λ) is different from the one that would be derived by setting
k = ∞ in Eq. (3.16), since the n-step return uses the corrected immediate reward
Rt+1 + γmax q(St, ·) − q(St, At) instead of the immediate reward alone. This correc-
tion is invisible in Watkins’s Q(λ), since the behavior policy is assumed to be greedy,
before the return is cut off.
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3.4 Safe and Efficient Off-Policy RL
Of all the algorithms reviewed in the previous section, only Qπ and Tree-Backup don’t use
importance sampling ratios. Unfortunately, the assumption necessary for convergence of
Qπ, that µ and π are close, is restrictive, as well as difficult to uphold in the control case,
where the target policy is always greedy with respect to the current Q-function. In that
sense the algorithm is not safe: it does not handle the case of arbitrary “off-policyness”.
On the other hand, TB(λ) tolerates arbitrary target/behavior discrepancies by scaling
information (here called traces) from future temporal differences by the product of target
policy probabilities. TB(λ) is not efficient in the “near on-policy” case (similar µ and π),
though, as traces may be cut prematurely, preventing learning from full returns.
We wish to combine the strengths of these two algorithms. To this end, in the rest

of the chapter, we express several of the off-policy, return-based algorithms from the
previous section in a common form, and analyze the convergence properties of this general
form. We then motivate and derive an improved algorithm, Retrace(λ), which is both
safe and efficient, enjoying convergence guarantees for off-policy policy evaluation and –
more importantly – for the control setting. As a corollary to this analysis, the first proof
of convergence Watkins’ Q(λ) follows.

3.4.1 Unified View
The general form that we consider for comparing several return-based off-policy algo-
rithms is:

Uq(s, a) def= q(s, a) + Eµ

∑
t≥0

γt
( t∏
i=1

ci

)(
Rt+1 + γEπq(St+1, ·)− q(St, At)

) , (3.17)

for some non-negative coefficients (ci), where we write
(∏t

i=1 ci

)
= 1 when t = 0. By

extension of the idea of eligibility traces we informally call the coefficients (ci) the traces of
the operator. We review three key algorithms that can be instantiated through this form.

Importance sampling (IS): ci = ρi = π(Ai|Si)
µ(Ai|Si) . Importance sampling is the simplest

way to correct for the discrepancy between µ and π when learning from off-policy returns
[Precup et al. 2000, Precup et al. 2001, Geist and Scherrer 2014]. The off-policy cor-
rection uses the product of the likelihood ratios between π and µ. Notice that the UQ
operator (3.17) defined with this choice of (ci) yields qπ for any q. For q = 0 we recover
the basic IS estimate

∑∞
t=0 γ

t
(∏t

i=1 ci

)
Rt+1. Thus, Eq. (3.17) can be seen as a variance
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reduction technique (with a baseline q). It is well-known that IS estimates can suffer from
large – possibly infinite – variance (mainly due to the variance of the probability ratio
product). This in turn has motivated methods that reduce the variance at the cost of
adding bias [Mahmood and Sutton 2015, Sutton et al. 2016, Hallak et al. 2016].

Off-policy Qπ(λ) and Q∗(λ): ci = λ. In the first part of this chapter, we have in-
troduced an off-policy correction based on a the Q-function (instead of correcting the
probability of the sample path like in IS). This approach corresponds to the choice ci = λ,
and offers the advantage of avoiding the blow-up of the variance of the product of ratios
encountered with IS. Interestingly, we have shown that this operator contracts around qπ
provided that µ and π are sufficiently close to each other. Unfortunately, Qπ(λ) requires
knowledge of ε, and the condition for Q∗(λ) is very conservative. Neither Qπ(λ), nor
Q∗(λ) are safe as they do not guarantee convergence for arbitrary π and µ.

Tree-backup (TB) (λ): ci = λπ(Ai|Si). The TB(λ) algorithm of [Precup et al. 2000]
corrects for the target/behavior discrepancy by multiplying each term of the sum by the
product of target policy probabilities. The corresponding operator defines a contraction
mapping (not only in expectation but also for any sample trajectory) for any policies π
and µ, which makes it a safe algorithm. However, it is not efficient, since in the near
on-policy case (where µ and π are similar) the algorithm unnecessarily cuts the traces and
does not utilize full returns. As shown by our results on Qπ(λ), we need not discount
stochastic on-policy transitions for convergence.

3.4.2 Retrace(λ)
Our contribution is an algorithm – Retrace(λ) – that takes the best of the three algorithms
mentioned above. Retrace(λ) uses a truncated importance sampling ratio together with
the value corrections. It instantiates ci as:

ci = λmin (1, ρi) = λmin
(

1, π(Ai|Si)
µ(Ai|Si)

)
. (3.18)

The truncation allows it to avoid the variance explosion of the product of importance
sampling ratios. At the same time, unlike the restricted convergence of Qπ(λ), even a
truncated importance ratio is sufficient to guarantee general convergence for any λ and ε.
Finally, the traces maintained by Retrace(λ) are always larger than those of TB(λ), since

min (1, ρi) = min
(

1, π(Ai|Si)
µ(Ai|Si)

)
≥ π(Ai|Si).
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Definition Estimation Guaranteed Use full returns
of ci variance convergence of U (near on-policy)

Importance π(Ai|Si)
µ(Ai|Si) High for any π, µ yessampling

Q(λ) λ Low only for π close to µ yes
TB(λ) λπ(Ai|Si) Low for any π, µ no
Retrace(λ) λmin

(
1, π(Ai|Si)

µ(Ai|Si)
)

Low for any π, µ yes

Table 3.3: Properties of several algorithms in terms of the general operator U from
Eq. (3.17).

In particular, when the update is on-policy, µi = πi, Retrace(λ) is able to learn from the
full returns. Table (3.3) summarizes the instantiations and properties of the relevant
algorithms.
In the subsequent sections, we will show the following:

• The operator underlying Retrace(λ) is a γ-contraction around qπ, for arbitrary poli-
cies µ and π,

• Taking ci to be no greater than the ratio π/µ is sufficient to guarantee this property,
• Under mild assumptions, the control version of Retrace(λ), where π is replaced by

a sequence of increasingly greedy policies, is also a contraction, and
• The online Retrace(λ) algorithm converges a.s. to q∗ in the control case, without
requiring the GLIE (greedy in the limit of infinite exploration) assumption.

• As a corollary, we prove the convergence of Watkins’s Q(λ) to q∗ for the first time.

3.4.3 Convergence Theorems
In this section we will in turn consider both off-policy policy evaluation and control settings.
The key result is that U is a contraction mapping in both settings (under a mild additional
assumption for the control case).

Policy Evaluation

Consider a fixed target policy π. Let the behavior policy µ be fixed as well, although
our results easily extend to sequences of behavior policies (µk)k∈N. Our first result states
the γ-contraction of the operator (3.17) defined by any set of non-negative coefficients
ci = ci(Ai,Fi) (in order to emphasize that ci can be a function of the whole history Fi)
under the assumption that ci ≤ π(Ai|Si)

µ(Ai|Si) .
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Theorem 3.3

The operator U defined by Eq. (3.17) has a unique fixed point qπ. Furthermore, if
for each Ai ∈ A and each history Fi we have ci = ci(Ai,Fi) ∈

[
0, π(Ai|Si)

µ(Ai|Si)
]
, then

for any Q-function q:

|Uq(s, a)− qπ(s, a)| ≤ η(s, a)‖q − qπ‖,

where

η(s, a) def= 1− (1− γ)Eµ

∑
t≥0

γt

(
t∏
i=1

ci

) .
Thus, η(s, a) ∈ [0, γ] is a (s, a)-specific contraction coefficient, which is γ when c1 = 0
(the trace is cut immediately) and can be close to zero when learning from full returns
(ct ≈ 1 for all t).

Control

In the control setting, the single target policy π is replaced by a sequence of policies
which depend on qk. While most prior work has focused on strictly greedy policies, here
we consider the larger class of increasingly greedy sequences. We now make this notion
precise.

Definition 3.1

We say that a sequence of policies (πk)k∈N is increasingly greedy w.r.t. a sequence
(qk)k∈N of Q-functions if the following property holds for all k:

Pπk+1qk+1 ≥ Pπkqk+1.

Intuitively, this means that each πk+1 is at least as greedy as the previous policy πk
for qk+1. Many natural sequences of policies are increasingly greedy, including εk-greedy
policies (with non-increasing εk) and softmax policies (with non-increasing temperature).
We will assume that ci = ci(Ai,Fi) = c(Ai, Si) is Markovian, in the sense that it

depends on Si, Ai (as well as the policies π and µ) only, but not on the full past history.
This allows us to define the (sub)-probability transition operator

Pcµq(s, a) def=
∑
s′

∑
a′

p(s′|s, a)µ(a′|s′)c(a′, s′)q(s′, a′).
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Finally, an additional requirement to the convergence in the control case, we assume
that q0 satisfies T π0q0 ≥ q0, which can be achieved by a pessimistic initialization q0 =
−rmax/(1 − γ).

Theorem 3.4

Consider an arbitrary sequence of behavior policies (µk)k∈N (which may depend on
(qk)) and a sequence of target policies (πk)k∈N that are increasingly greedy w.r.t. the
sequence (qk)k∈N, and consider the update:

qk+1 = Ukqk,

where the return operator Uk is defined by Eq. (3.17) for πk and µk and a Markovian
ci = c(Ai, Si) ∈ [0, π(Ai|Si)

µ(Ai|Si) ]. Assume the target policies πk are εk-away from the
greedy policies w.r.t. qk, in the sense that T πkqk ≥ T qk − εk‖qk‖e, where e is the
vector with 1-components. Further suppose that T π0q0 ≥ q0. Then for any k ≥ 0,

‖qk+1 − q∗‖ ≤ γ‖qk − q∗‖+ εk‖qk‖.

In consequence, if εk → 0 then qk → q∗.

Online algorithms

So far we have analyzed the contraction properties of the expected U operators. We now
describe the online Retrace(λ) algorithm which can learn from sample trajectories. The
every-visit, backward view of the algorithm is given in Algorithm 2.
In this section, we will only consider the Retrace(λ) algorithm defined with the coefficient
c = λmin(1, π/µ). For that c, let us rewrite the operator Pcµ as λPπ∧µ, where

Pπ∧µq(x, a) def=
∑
y

∑
b

min(π(b|y), µ(b|y))q(y, b),

and write the Retrace operator

Uq = q + (I − λγPπ∧µ)−1(T πq − q).

We focus on the control case, noting that a similar (and more general) result can be derived
for policy evaluation. We will use the notation πq to refer to the policy greedy w.r.t. q.
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Algorithm 2 Retrace(λ) algorithm.

Given: Initial Q-function q0, step-sizes (αk)k∈N
for k = 1, . . . do

Sample a trajectory S0, A0, R0, . . . , STk from µk
qk+1(s, a)← qk(s, a) ∀s, a
e(s, a)← 0 ∀s, a
for t = 0, . . . , Tk − 1 do
δπkt ← Rt+1 + γEπkqk+1(St+1, ·)− qk+1(St, At)
ct ← λmin

(
1, πk(St,At)

µk(St,At)

)
for all s ∈ S, a ∈ A do
e(s, a)← ctγe(s, a) + I{(St, At) = (s, a)}
qk+1(s, a)← qk+1(s, a) + αkδ

πk
t e(s, a)

end for
end for

end for

Assumption 3.2

The operators Pπk and Pπk∧µk asymptotically commute. That is, for any Q-function
q:

lim
k→∞

‖(PπkPπk∧µk − Pπk∧µkPπk)q‖ = 0.

Theorem 3.5

Consider a sequence of sample trajectories, with the kth trajectory S0, A0, R1, S1,

A1, R2, . . . generated by following µk: At ∼ µk(·|St). For each (s, a) along this
trajectory, with ` the time of first occurrence of (s, a), update

qk+1(s, a)← qk(s, a) + αk

∞∑
t=`

δπkt

t∑
j=`

γt−j

 t∏
i=j+1

ci

 I{(Sj , Aj) = (s, a)},

(3.19)
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where δπkt
def= Rt+1 + γEπkqk(St+1, ·) − qk(St, At). We consider the Retrace(λ)

algorithm where ci = λmin
(
1, π(Ai|Si)

µ(Ai|Si)
)
. Assume that (πk)k∈N are increasingly

greedy w.r.t. (qk)k∈N and are each εk-away from the greedy policies (πqk)k∈N,
i.e. maxs ‖πk(·|s) − πqk(·|s)‖1 ≤ εk, with εk → 0. Let Assumptions 2.2, 2.3, 3.1
and 3.2 hold. Then qk → q∗ almost surely.

The proof extends similar convergence proofs of TD(λ) by [Bertsekas and Tsitsiklis 1996]
and of optimistic policy iteration by [Tsitsiklis 2003], and is provided in Appendix A.7.
Notice that compared to Theorem 3.4 we do not assume that T π0q0 − q0 ≥ 0 here.
However, we make the additional (rather technical) Assumption 3.2. It is satisfied for
example when the probability assigned by the behavior policy µk(·|s) to the greedy action
πqk(s) is independent of s. Examples include ε-greedy policies, or more generally mixtures
between the greedy policy πqk and an arbitrary distribution µ (see Lemma A.4 in the
appendix for the proof):

µk(a|x) = ε
µ(a|x)

1− µ(πqk(x)|x) I{a 6= πqk(x)}+ (1− ε)I{a = πqk(x)}. (3.20)

Notice that the mixture coefficient ε needs not go to 0.

3.4.4 Experiments
To validate our theoretical results, we employ Retrace(λ) in an experience replay [Lin 1993]
setting, where sample transitions are stored within a large but bounded replay memory and
subsequently replayed as if they were new experience. Naturally, older data in the memory
is usually drawn from a policy which differs from the current policy, offering an excellent
point of comparison for the algorithms presented in Table 3.3.
Our agent adapts the DQN architecture of [Mnih et al. 2015] to replay short sequences

from the memory instead of single transitions. The Q-function target for a sample sequence
St, At, Rt+1, . . . , St+k is

∆q(St, At) =
k−1∑
i=t

γi−t
( i∏
j=t+1

cj

)[
Ri+1 + γEπq(Si+1, ·)− q(Si, Ai)

]
.

We compare our algorithms’ performance on 60 different Atari 2600 games in the Ar-
cade Learning Environment [Bellemare et al. 2013] using [Bellemare et al. 2013]’s
inter-algorithm score distribution. Inter-algorithm scores are normalized so that 0 and
1 respectively correspond to the worst and best score for a particular game, within the set
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Figure 3.4: Inter-algorithm score distribution for λ-return (λ = 1) variants and
Q-Learning (λ = 0).

of algorithms under comparison. If g ∈ {1, . . . , 60} is a game and zg,a the inter-algorithm
score on g for algorithm a, then the score distribution function is

f(s) def= |{g : zg,a ≥ x}|
60 .

Roughly, a strictly higher curve corresponds to a better algorithm. See Fig. 3.4 for the
results.
Across values of λ, λ = 1 performs best, except for Q∗ where λ ≤ 0.5 perform better

(Fig. 3.5). In general, Q∗ is highly sensitive to the choice of λ (see Fig. 3.4, left). Both
Retrace and TB(λ) achieve dramatically higher performance than Q-Learning early on and
maintain their advantage throughout. Compared to TB(λ), Retrace(λ) offers a narrower
but still marked advantage. For the full experimental and performance details, we refer
the reader to the appendices of the original publication [Munos et al. 2016].

3.4.5 Discussion
This section will present a brief discussion on a number of topics related to our analysis. We
will begin by discussing the motivation behind the choice of the shape of trace coefficients
for Retrace.

Choice of the trace coefficients ci

Theorems 3.3 and 3.4 ensure convergence to qπ and q∗ for any trace coefficient ci ∈
[0, π(Ai|Si)

µ(Ai|Si) ]. This in itself is interesting: we may under-estimate, but we may not over-
estimate the contribution of an action. However, to make the best choice of ci, we need
to consider the speed of convergence, which depends on both (1) the variance of the
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Figure 3.5: Average inter-algorithm scores for each value of λ. The DQN scores are fixed
across different λ, but the corresponding inter-algorithm scores vary depending on the
worst and best performer within each λ. Note that average scores are not directly

comparable across different values of λ.

online estimate, which indicates how many online updates are required in a single iteration
of U , and (2) the contraction coefficient of U . We summarize the intuitions for these
relationships below.

Variance. The variance of the estimate strongly depends on the variance of the product
(c1 . . . ct), which is not an easy quantity to control in general, as (ci) are usually not
independent. However, assuming independence and stationarity of (ci), we can deduce that
Var [

∑
t γ

tc1 . . . ct] is at least
∑
t γ

2tVar [c]t, which is finite only if Var [c] < 1/γ2. Thus,
an important requirement for a numerically stable algorithm is for Var [c] to be as small as
possible, and certainly no larger than 1/γ2. Note that this rules out importance sampling,
for which c ∝ π(a|s)

µ(a|s) , and thus Var [c|s] ∝
∑
a µ(a|s)

(
π(a|s)
µ(a|s) − 1

)2
=
∑
a
π(a|s)2

µ(a|s) − 1,
which may be larger than 1/γ2 for some π and µ. To ensure this does not happen, we
take ci ≤ 1.

Contraction speed. The contraction coefficient η ∈ [0, γ] of U depends on how much
the traces have been cut, and should be as small as possible (since it takes log( 1

ε )/ log( 1
η )

iterations of U to obtain an ε-approximation). µ is smallest when the traces are not cut at
all – indeed if ci = 1 for all s, U is the policy evaluation operator which produces qπ in a
single iteration. When the traces are cut, we do not benefit from learning from full returns
– in the extreme, c1 = 0 and U reduces to the single-step Bellman operator with η = γ.
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Although the traces (ci) should be as large as possible, they probably should not be larger
than 1, or the update rule would consider the future to be more important than the present.
A reasonable trade-off between low variance (when ci are small) and high contraction

speed (when ci are large) is given by Retrace(λ), for which we prove the convergence of
the online algorithm.
If we relax the assumption that the trace is Markovian (in which case only the result

for policy evaluation has been proven so far) we could trade off a low trace at some time
for a possibly larger-than-1 trace at another time, as long as their product is less than
1. A possible choice could be:

ct = λmin
( 1
c1 . . . ct−1

,
π(At|St)
µ(At|St)

)
. (3.21)

Other points of discussion

No GLIE assumption. The crucial point of Theorem 3.4 is that convergence to q∗

occurs for arbitrary behavior policies. Thus the online result in Theorem 3.5 does not
require the behavior policies to become greedy in the limit of infinite exploration (i.e. GLIE
assumption, [Singh et al. 2000]). We believe Theorem 3.5 provides the first convergence
result to q∗ for a λ-return (with λ > 0) algorithm that does not require this (difficult-
to-uphold) assumption.

Proof of Watkins’ Q(λ). As a corollary of Theorem 3.5 when selecting our target
policies πk to be greedy w.r.t. qk (i.e. εk = 0), we deduce that Watkins’ Q(λ) [Watkins
1989]) converges a.s. to q∗ (under the assumption that µk commutes asymptotically with
the greedy policies, which is satisfied for e.g. µk defined by Eq. (3.20)). We believe this
is the first such proof.

Increasingly greedy policies. The assumption that the sequence of target policies (πk)
is increasingly greedy w.r.t. the sequence of (qk) is more general that just considering
greedy policies w.r.t. (qk) (as in Watkins’s Q(λ)), and may be more efficient. Indeed,
using non-greedy target policies πk can speed up convergence as the traces will not be cut
as frequently. Of course, in order to converge to q∗, we eventually need the target policies
(and not, as discussed above, the behavior policies, as mentioned above) to become greedy
in the limit (i.e. εk → 0 as stated in Theorem 3.4).
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Existing extensions. Many of the directions for future work have already been tackled
since the time of the publications underlying this chapter. [Gruslys et al. 2018] incorpo-
rate Retrace in the actor-critic setting to be able to stably replay experiences off-policy.
[Touati et al. 2017] analyze the convergence of the general operator underlying Retrace
under linear function approximation, and extend it to a gradient-based form to have this
convergence hold. [Mahmood et al. 2017] formulate another general class of stable off-
policy algorithms with action-dependent bootstrapping instead of importance sampling,
and show that Retrace can be expressed in this way.

Limitations. Although the importance sampling ratio is truncated, Retrace still relies on
it being available, and hence for the behavior policy to be stochastic. This can be limiting
in general, and is the reason why Chapter 4 relies on the Tree-Backup algorithm instead.
The extra Assumption 3.2 for the convergence of the online algorithm, requires that the
exploration strategy is state-independent, and hence rules out most strategic exploration
strategies. Removing this assumption remains an open problem.

3.5 Related Work
This chapter has focused specifically on model-free action-value off-policy learning. The
treatment of this problem can be done in other settings as well, and we briefly discuss
several related ideas.

3.5.1 Doubly Robust Off-Policy Policy Evaluation
There is an interesting connection of the work described so far and the doubly robust
framework of off-policy value estimation [Jiang and Li 2016]. This method falls in between
model-based and model-free methods. It estimates the models r and p from samples, and
uses them to obtain the values v̂ and q̂ analytically, which are then used to reduce the
variance of the model-free importance sampling estimate. The method operates over a
fixed horizon H and updates its estimates as follows:

VH+1−t = v̂(St) + ρt(Rt+1 + γVH−t − q̂(St, At)), (3.22)

with V0(s) = 0,∀s ∈ S, and VH providing the complete estimate over a horizon H. The
doubly robust label refers to this estimate being robust to either the errors in the model (and
hence in v̂ and q̂), or the variance due to the importance sampling estimate. [Thomas
and Brunskill 2016] propose a few extensions to this estimator with further theoretical
guarantees and reliable empirical performance.
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Interestingly, we can make the connection between the estimator of Eq. (3.22) and the
off-policy corrected operator of this chapter. In particular, we can rewrite the above as:

VH = v̂(S1) + ρ1(R2 + γv̂(S2)− q̂(S1, A1) + γρ2(R3 + γv̂(S3)− q̂(S2, A2) + γρ3(. . .)))

= v̂(S1) +
H∑
t=1

γt−1

 t∏
j=1

ρj

 (Rt+1 + γ v̂(St+1)︸ ︷︷ ︸
Eπ q̂(St+1,·)

−q̂(St, At))

= v̂(S1) +
H∑
i=1

γt−1

 t∏
j=1

ρj

 δ̂πt ,

where as before ρi
def= π(Ai|Si)

µ(Ai|Si) . This estimator is very similar to a fixed-horizon, λ =
1 version of the unified operator of Eq. (3.17) for V-functions in the policy evaluation
setting. The main difference is that δ̂πt depends on q̂, which is a separate model-based
estimate, independent of the doubly-robust estimator itself. Unlike Retrace(λ) or Qπ(λ),
the complete importance sampling ratio is used. The authors provide a variance analysis of
their estimate, and it would be interesting to adapt it to the Retrace setting. Alternatively,
it would be interesting to investigate whether the sufficiency of the truncated importance
sampling ratio as demonstrated in the analysis of Retrace yields benefits in the doubly
robust setting.

3.5.2 Off-Policy Policy Gradient Methods
Policy gradient algorithms are an important subset of direct policy search methods, in
which the gradient of the policy is adjusted in the direction of increasing the return. The
problem of off-policy learning is slightly more subtle in this setting. Naive approaches (e.g.
REINFORCE [Williams 1992]) consider the generated return directly, and hence have no
mechanism of separating behaviors from targets. Actor-critic methods mitigate this by
replacing the sample of the reward experience with the critic value function, which can,
potentially, be learnt off-policy with TD learning [Degris et al. 2012]. The absence of
stable multi-step off-policy TD algorithms in the past, however, limited both the actor
and the critic to single-step sequences. Retrace(λ) makes progress towards removing this
limitation and enables efficient off-policy policy gradient algorithms, as seen in a number
of recent instances (e.g. [Gruslys et al. 2018, Espeholt et al. 2018]).
It can still be tricky to achieve stable learning when training policies with off-policy

samples. To address this, [Gu et al. 2017] introduce an additional degree of freedom that
interpolates between on- and off-policy gradient updates, and show that in some sense
the best of both worlds could be achieved.
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3.5.3 Connection with the Metropolis-Hastings Algorithm
Finally, we make another, intriguing connection to a classical algorithm. Before doing so,
let us briefly summarize the Markov Chain Monte Carlo (MCMC) setting. The idea is to
estimate some target distribution P via sampling a Markov chain whose stationary distri-
bution is P . If P is complex, designing the appropriate Markov chain may be difficult. This
is the problem that the Metropolis-Hastings algorithm [Metropolis et al. 1953, Hastings
1970] solves: it is able to achieve the desired target distribution from an arbitrary proposal
distribution Q that governs the Markov chain. It does so by generating states according
to Q, at each transition x, x′ querying an “acceptance condition”:

A(x′|x) = min
(

1, P (x′|x)
P (x|x′)

Q(x|x′)
Q(x′|x)

)
, (3.23)

and proceeding with x′ w.p. A(x′|x), and otherwise remaining in x and repeating the pro-
cess. The shape of A should look familiar, and reminiscent of the shape of c in Retrace(1)
(Eq. (3.18)). It turns out we can take the resemblance further by reinterpreting off-policy
learning in the MCMC setting. In particular, recall the augmented MDP interpretation
of state-action values given in Remark 2.1: the new MDP M′π contains all of the orig-
inal states of the original MDP M, together with all s, a pairs. Transitions of the form
s, a → s′ are shared with M and made according to p, while transitions of the form
s→ s, a are made according to π. Then, to say that we learn off-policy is to say that we
wish to reconstruct the target Markov chain underlying M′π, while sampling a proposal,
or behavior, Markov chain underlying M′µ. In these Markov chains there are two types
of x → x′ transitions to consider.

1) s→ s,a. Recall that P (x′|x) = P (s, a|s) = π(a|s) and Q(x′|x) = Q(s, a|s) =
µ(a|s). Noticing that the reverse probability P (x|x′) = P (s|s, a) = Q(s|s, a) = 1 by
construction, we can rewrite Eq. (3.23) as:

A(a|s) = min
(

1, π(a|s)
µ(a|s)

)
, (3.24)

which is the formula for the Retrace cs,a coefficient exactly.

2) s,a→ s′. The forward probabilities for these transitions are independent of the policy
and shared between π and µ: P (x′|x) = Q(x′|x) = p(s′|s, a), but to obtain the acceptance
ratio we still need to consider P (x|x′) = P (s, a|s′) and Q(s, a|s′), which do depend on
the policy. We know that for an MDP transition matrix p we have: p(s, a|s′)dπ(s′) =
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p(s′|s, a)π(a|s)dπ(s), where dπ is the stationary distribution of the policy π in the original
MDP. Hence:

P (s, a|s′) = p(s, a|s′) = p(s′|s, a)π(a|s)dπ(s)
dπ(s′) , (3.25)

and we have our acceptance ratio:4

A(s′|s, a) = min
(

1, π(a|s)
µ(a|s)

dπ(s)
dπ(s′)

dµ(s′)
dµ(s)

)
. (3.26)

There are hence a couple of differences in the settings that both have to do with the
difference in the goals of the procedures. Off-policy learning attempts to learn the value
function qπ from trajectories generated by µ, while Metropolis-Hastings wishes to estimate
the Markov Chain w.r.t. π, while sampling one w.r.t. µ.

• Instead of considering the ratio in Eq. (3.26), Retrace accepts all s′ w.p. 1, and only
queries the acceptance condition for policies via Eq. (3.24). The introduced bias
is mitigated by the fact that off-policy corrections are applied in the value space,
inducing the correct fixed point.

• In multi-step off-policy learning one does not resample actions in the case of rejection,
but instead the return is terminated in favor of bootstrapping with the value function.

It is interesting to use this interpretation of off-policy learning to further explore con-
nections to MCMC methods.

3.6 Summary
Starting from the naive idea that policy probabilities are not always necessary for conver-
gence, we formulated a policy evaluation algorithm that converges subject to a tradeoff
between the degree of bootstrapping λ, distance between policies ε, and the discount fac-
tor γ. Although in control, determining the existence of a non-trivial ε-dependent bound
for λ remains an open problem, our experiments suggest that such a bound exists, and
closely resembles the 1−γ

γε bound from the policy evaluation case.
We proceeded to summarize several existing off-policy return-based algorithms along with

our new ones, and cast them in a common form. Then, in an attempt to combine their
strengths, we propose an improved Retrace(λ) algorithm, that includes an approximate

4Note that Eq. (3.25) makes it easy to verify that P and Q are reversible, as required by Metropolis-
Hastings.
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importance sampling correction, which allows it to enjoy general convergence guarantees.
Notably, our convergence analysis yields what we believe to be the first convergence proof
of Watkins’s Q(λ).
In the next chapter we will use much of the machinery developed here in the context of

analyzing multi-step, or temporally abstract actions.
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4 | From Multi-Step Temporal
Differences to Options

Temporal abstraction is essential for learning with sophistication, as it enables one to
escape the naive measure of a single time-step, and interact with the environment at a
variety of timescales. In reinforcement learning, a temporally abstract action (or an option)
is equal parts knowing what to do and when to stop. In this chapter we study the latter:
What are the effects of longer options on the quality of the plan and the ease of finding
it? What would happen if we were to stop what we’re doing?
We develop insights into these questions by considering the options framework through

the looking glass of multi-step temporal differences from the previous chapter. That the
two share commonalities should not come as a surprise, but we cast them into a unified
framework for the first time. We first consider a simpler option execution model and
show that in it, planning with options closely mirrors the λ-policy iteration algorithm, with
option termination affecting the rate of convergence to the solution, but not the solution
itself. We then show that the role of option termination is more prominent under the
general option execution model, and give a novel algorithm that is able to off-policy learn
about terminations that never happened.
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4.1 Introduction
Abstraction is essential for scaling up learning, and there has been a renewed interest in
methods that extract, or leverage it [Bacon et al. 2017, Vezhnevets et al. 2016, Kulkarni
et al. 2016, Tessler et al. 2016]. The options framework [Sutton et al. 1999] is the de
facto standard for modeling temporal abstraction in reinforcement learning.
The temporal aspect of an option is determined by its termination condition β, which

roughly determines its length. Learning and planning with longer options is known to be
more efficient [Mann et al. 2015]. This is partly due to an option having similar properties
to the familiar multi-step λ-returns,which are known to yield faster convergence [Bertsekas
and Tsitsiklis 1996].1 The key qualitative difference between the termination β and eligi-
bility trace λ, however, is that in the usual call-and-return model, β directly affects the
solution rather than, like λ, just the rate of convergence. If β is not trivial, this couples
the quality of the solution with the quality of the options at hand, and can be restrictive
especially if the options are not perfect. Indeed, when a set of options is given, we can
show that the shorter the options, the more optimal the resulting policy is at the prim-
itive action level. This poses a challenge: on the one hand, we wish for the options to
be long to yield fast convergence and meaningful exploration, but on the other, if these
options are not ideal, the more we commit to them, the poorer the quality of our solution.
Interrupting suboptimal options is one way of addressing this [Sutton et al. 1999], but
like “cutting” traces in off-policy learning, it may prevent us from following a coherent
policy for more than a couple of steps.
To this end, we propose to terminate options off-policy, that is: decouple the behavior

termination condition that the options execute with, from the target termination condi-
tion that is to be factored into the solution. We describe a new algorithm, Q(β), that
achieves this by leveraging connections to several old and new multi-step off-policy tem-
poral difference algorithms.
This chapter is organized as follows. To illustrate the similarity between λ and β, after

introducing relevant background, we first treat a simpler gated option execution model,
in which a new option is chosen at each step. We show that in this case, planning with
options resembles λ-policy iteration, and show theoretically and empirically that β obeys
the analogous tradeoffs. We then move on to the general call-and-return execution model,
and show that the role of β here is more prominent, as it affects the solution. We describe
and analyze our algorithm Q(β) that is able to learn the solution w.r.t. any termination
condition from the available option traces. The behavior β then reverts back to merely

1This similarity is particularly relevant since a full β-model [Sutton 1995] is at the basis of both
paradigms.
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controlling convergence speed. We validate Q(β) empirically and show that it can learn
an optimal solution from suboptimal options quicker than the alternatives.

4.2 Background
In this section we will briefly transfer our operator definitions to state value functions,
as required by the first part of this chapter. We will then introduce the option frame-
work formally.

4.2.1 State value function
In the first part of this chapter we will be concerned with the planning setting. In this
setting, where the models are available, it isn’t necessary to maintain the complete Q-
function, and one may instead only maintain the state value function v, obtaining q using
Eq. (2.6) and the models r and p. It is then convenient to consider the MDP dynamics
jointly with the policy:

pπ(s, s′) def=
∑
a∈A

π(s, a)p(s′|s, a), ∀s, s′ ∈ S. (4.1)

rπ(s) def=
∑
a∈A

π(s, a)r(s, a), ∀s ∈ S. (4.2)

The matrix pπ describes the dynamics of the Markov chain induced by a policy π on the
MDP, and together with rπ, they define a Markov Reward Process, or an MDP with the
decision aspect removed [Howard 1971]. Analogously to (2.12) we have that:

vπ = (I − γpπ)−1rπ.

and the Bellman operators can be overloaded to apply to V-functions:

T πv def= rπ + γpπv, T πvπ = vπ,

T v def= max
π

(rπ + γpπv), T v∗ = v∗.

4.2.2 The Options Framework
Let us now introduce the options framework formally [Sutton et al. 1999]. An option o
is a tuple (Io, βo, πo), with Io ⊆ S the initiation set, from which an option may start,
βo : S → [0, 1], the probabilistic termination condition, and πo, the option policy with
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which it navigates through the environment. Just like the MDP reward and transition
models r and p, options can be seen to induce semi-MDP [Puterman 1994] models R and
P as follows [Sutton et al. 1999]:

P oss′
def= ED:s→s′|o

[
γD
]

= γpπ
o

ss′βs′ + γ
∑
s′′

pπ
o

ss′′(1− βs′′)P os′′s′ , (4.3)

Ros
def= ED:s|o

[
D∑
i=1

γi−1rπ
o

(St+i)|St = s

]
= rπ

o

s + γ
∑
s′

pπ
o

ss′(1− βs′)Ros′ . (4.4)

where ED:s|o [·] and ED:s→s′|o [·] are the expectations of the option duration D from state
s and the travel time between state s and s′, respectively, w.r.t. option dynamics pπo and
the termination condition βo. For simplicity, we assume that options can initiate anywhere:
Io = S,∀o ∈ O. The policy space of interest is now over options: µ : S × O → [0, 1]. It
will also be relevant to consider the marginal flat policy over primitive actions κµ:

κµ(a|s) def=
∑
o

µ(o|s)πo(a|s). (4.5)

We will omit the µ subscript, where clear from context.

4.3 Planning with Options as λ-Policy Iteration
We begin by considering the gated model of option execution, in which a new option
choice is made at every primitive time step [Bacon and Precup 2016]. The term gating
originates from neuroscience, where it refers to a cognitive model with a unitary working
memory [Braver and Cohen 1999]. Such a model is particularly relevant when the planning
setting is considered. We show that planning with option models under the gated model
resembles λ-policy iteration [Bertsekas and Ioffe 1996]. We give a new proof of convergence
with an asymptotic rate explicitly in terms of the termination parameter. The analogous
implications thus carry over: given a fixed set of suitable options:2

1. The more options terminate (that is: the shorter they are), the closer each iteration
of planning with them is to value iteration over primitive actions, and thus the faster
it is to perform.

2. The less options terminate (that is: the longer they are), the closer the resulting
iteration is to policy iteration over primitive actions, and the fewer such iterations
are required to find the value of the optimal policy.

2We will make this notion precise in Section 4.3.3.
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This opposite dependence on the termination amount suggests that just like with the λ
parameter, an intermediate value for the termination parameter β will usually be best, and
“hard” deterministic terminations may not be ideal. In the rest of this section, we will
make the correspondence with λ-PI explicit, use it to give a new convergence proof, and
validate the theoretical tradeoff on β empirically.

4.3.1 λ-Policy Iteration
Value iteration (VI) is one of the backbones of approximate dynamic programming. It
relies on making incremental updates to the value function, in the direction of the value
of the current greedy policy, and is guaranteed to converge to the optimum in the limit
of infinite time. Unfortunately, as the discount factor gets closer to one, the convergence
may occur very slowly [Bertsekas and Tsitsiklis 1996]. Policy iteration (PI) represents
the other extreme: it computes the value of the greedy policy at each iteration exactly,
and guarantees convergence in a finite number of such iterations. Unfortunately, it’s
rarely practical, as solving the corresponding system of linear equations involving a matrix
inverse is hard when the number of states gets large, and may be fatally inaccurate when
using approximations. Modified PI suggests a middle ground by taking a fixed number
of value iteration steps [Puterman and Shin 1978]. Finally, in the spirit of λ-operators,
λ-PI elegantly transitions between the extremes by taking a parameterized number of steps
towards the value of the greedy policy [Bertsekas and Ioffe 1996].
We will illustrate that doing a single value iteration with option models is equivalent to

a variant of λ-policy iteration over primitive actions, where the λ parameter is replaced
by a coefficient that depends on option terminations.

4.3.2 The Gated Options Operator
We first take a look at the underlying policy evaluation operators. Since the focus of this
section is planning, we will consider the state value function v throughout it. For each
option, let us define the following (sub-)stochastic matrices:

pβπ
o

(s, s′) def= pπ
o

(s, s′)βo(s′),

pβκ(s, s′) def=
∑
o

µ(o|s)pβπ
o

(s, s′) (4.6)

That is: pβπo(s, s′) denotes the probability of transitioning from s to s′ and terminating in
s′ under an option o, and pβκ(s, s′) denotes the average of these probabilities over some
policy over options µ. The matrices p(1−β)πo and p(1−β)κ can be defined analogously.
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Under gating, the option models at each step are an average of all options w.r.t. µ,
and the reward model writes:

Rµs
def=
∑
o

µ(o|s)
(
rπ

o

s + γ
∑
s′

p
(1−β)πo
ss′

∑
o′

µ(o′|s′)Ro
′

s′

)
= rκs + γ

∑
s′

p
(1−β)κ
ss′ Rµs′ .

(4.7)

Analogously, we have the the transition model:

Pµss′
def= γpβκss′ + γ

∑
s′′

p
(1−β)κ
ss′′ Pµs′′s′ .

Finally, the option-level Bellman operator writes in matrix form:

T µO v
def= Rµ + Pµv = rκ + γpβκv + γp(1−β)κ(Rµ + Pµv) (4.8)
= (I − γp(1−β)κ)−1(rκ + γpβκv)
= (I − γp(1−β)κ)−1(rκ + γ(pκ − p(1−β)κ)v). (4.9)

Policy Evaluation

Now let us review the evaluation operator for λ-policy iteration (λ-PI) [Bertsekas and
Ioffe 1996]:

T πλ v
def= (I − γλpπ)−1(rπ + γ(1− λ)pπv) = (I − γpλπ)−1(rπ + γ(pπ − pλπ)v), (4.10)

where we write pλπ = λpπ by an analogy with Eq. (4.6), whose general form helps
highlight the fact that λ need not be a constant and can depend on the state [Yu and
Bertsekas 2012]. Inspecting equations (4.9) and (4.10), we can see that T πλ is a special
case of T µO , for which p(1−β)κ = pλπ, i.e. the termination function is a constant λ, and the
set of options is the set of primitive actions, κ = µ = π. Thus, just like λ, β has no effect
on the solution, and merely affects the rate of convergence. The following proposition
(Theorem 1 in [Bacon and Precup 2016]) justifies this by showing that the fixed point of
T µO is independent of the termination scheme.

Proposition 4.1

The options operator T µO as defined in Eq. (4.9) has a unique fixed point, equal to
vκ, the value of the marginalized policy κ.
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Control

Let us first characterize the control solution v∗O = vκµ∗ = maxµ vκµ that planning at the
option level ought to converge to. Because options induce a semi-MDP, this solution re-
mains well-defined. If the option set contains primitive actions, v∗O is simply v∗. Otherwise,
there may be an additional loss related to ‖v∗O− v∗‖ (see e.g. [Mann et al. 2015]). In the
following, we will simply consider convergence to v∗O, the best value expressible by options.
We are now ready to make the correspondence between the control algorithms. It can

be made analogously, but with a couple of differences. The λ-PI algorithm performs the
following update at iteration k [Bertsekas and Ioffe 1996, Scherrer 2013]:

πk ← arg max
π

(rπ + γpπvk)

vk+1 ← T πkλ vk

= (I − γpλπk)−1(rπk + γ(pπk − pλπk)vk).

Value iteration with option models (that is: w.r.t. policies over options µ) performs the
following update at iteration k:

µk ← arg max
µ

(Rµ + Pµvk)

vk+1 ← T µkO vk

= (I − γp(1−β)κk)−1(rκk + γ(pκk − p(1−β)κk)vk). (4.11)

We will refer to this algorithm as β-PI by analogy. There are two key differences between
these algorithms which have to do with the qualitative difference of the policies over
primitive actions πk and κk. In particular, in β-PI:

1. The policy improvement step is over options, rather than primitive actions: the
policy over options µk is greedy, but the corresponding marginal policy over primitive
actions κk is not, in general.

2. The dependence on β is more subtle than in the case of even a state-dependent λ,
as it depends on the policy over options µk, and may take different values even for
µ’s that yield the same κ.

We will see that these differences are non-essential to the convergence properties of the
operator, given a monotonicity assumption on the marginal policies.
This link explicitly justifies temporally extended actions: a single value iteration step over

option models induces a version of λ-PI over primitive actions, which is known to be more
efficient for nonzero values of λ [Scherrer 2013], i.e. options that are non-primitive. While
it has been known [Mann et al. 2015] that VI with options converges faster, the explicit
link with λ-PI is, to our knowledge, novel.

67



CHAPTER 4. FROM MULTI-STEP TEMPORAL DIFFERENCES TO OPTIONS

4.3.3 Analysis
We can conduct similar analysis to [Bertsekas and Tsitsiklis 1996] to prove convergence of
planning with option models to the optimal policy. We know from options literature [Pre-
cup et al. 1998] that the iteration (4.11) converges to v∗O. That line of analysis however,
in the semi-MDP fashion, typically treats options as a black box. Here, we are interested
in obtaining asymptotic convergence rates explicitly in terms of the termination coefficient
βo, as is done when analyzing λ-operators. To do so, we will require a monotonicity
assumption on our option set.

Assumption 4.1: Marginal policies get greedier.

There exists an index k′ s.t. for all k ≥ k′, the sequence of marginal policies (κk) is
increasingly greedy, in the sense that

T κkvk ≥ T vk − εk,

s.t. εk → 0, as k →∞.

Although this assumption is analytical, rather than practical, we did find it to hold in our
experiments. It would be interesting to characterize options that would satisfy it, as they
may have favorable convergence properties. We leave this for the future.
In the following we will consider convergence to the best policy expressible by the option

set: v∗O = vκµ∗ = maxµ vκµ , which if the options can express the optimal policy is
equal to v∗.

Convergence of Each Iteration

Let us first describe the mapping underlying each iteration (4.11). The following proposi-
tion is analogous to Proposition 2.7 from [Bertsekas and Tsitsiklis 1996].

Proposition 4.2

Given an option set O, policy over options µk, and an estimate vk, consider the
mapping Mk:

Mkv = rκk + γpβκkvk + γp(1−β)κkv. (4.12)
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Mk is a γ-contraction mapping w.r.t. the max norm, whose unique fixed point is the
next iterate vk+1. The contraction factor ξk is state-dependent and can be written:

ξk(s) = γ(1− ck(s)) ≤ γ, (4.13)

where ck(s) =
∑
o µk(o|s)

∑
s′ p

πo(s, s′)βos′ =
∑
s′ p

βκk
ss′ , the expected next state

option termination.

Thus, the contraction factor depends on the expected next-state termination ck, which
is nonzero in a state if there is a nonzero probability to transition to a terminating state
w.r.t. the options chosen by µ (e.g. the greedy option). In the extreme: βos = 1 in all
s, the options terminate immediately, and Mk converges is one step. This is the case
when all actions primitive. In that case, pβκk = pκk , p(1−β)κk(s, s′) = 0,∀s, s′, and the
iteration (4.12) writes:

Mkv = rκk + γpκkvk,

a single value iteration. The other extreme is βos′ = 0, the options never terminate, and
computing vk+1 requires full policy iteration step, which returns the value of the next policy
κk exactly. Then, pβκk(s, s′) = 0,∀s, s′, p(1−β)κk = pκk , and the iteration (4.12) writes:

Mkv = rκk + γp(1−β)κkv = rκk + γpκkv.

Finally, if βos′ = β is constant for all states and options, we recover the familiar equations
of the λ-operator exactly.

Convergence of β-PI

We are now ready to prove convergence of β-PI to v∗O, the optimal value given the set
of options. The proof is analogous to Proposition 2.8 [Bertsekas and Tsitsiklis 1996], but
the extension is not trivial since the sequence of policies (κk) is not greedy. Instead we
use the assumption 4.1 of (κk) being increasingly greedy. The proof is deferred to the
appendix to preserve readability.

Theorem 4.1

Let Assumption 4.1 hold. Then, value iteration with option models (iteration (4.11))
converges to v∗O almost surely. Furthermore, after some index k ≥ k̄, the rate of
convergence for each state s is linear in η(s):

|vk+1(s)− v∗O(s)| ≤ η(s)‖vk − v∗O‖∞,
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η(s) = 1− (1− γ)C(s) ≤ γ, (4.14)

where

C(s) = E Ot∼µk(·|St)
St+1∼pκ(·|St)

[ ∞∑
t=0

γt

(
t∏
i=1

(1− βOi(Si))|S0 = s

)]
.

The contraction coefficient η from Eq. (4.14) determines how many iterations are required,
and we want it to be as small as possible. This is achieved when C is as large as possible.
In the extreme, if C = 1, i.e. options never terminate, the value v∗O is found in a
single iteration. Notice that C ≈ E

[∑
t≥0 γ

t
∏t
i=1 ξ(Si)

]
, with ξ from (4.13), i.e. the

two convergence rates depend on c in opposite ways, and thus will be optimal for some
intermediate value of c. This convergence rate estimate (4.14) applies only for k ≥ k̄,
i.e. when the optimal policy has already been found. It is however qualitatively correct
as discussed in [Bertsekas 2015]. Indeed, in the extreme of (1 − β) → 1, β-PI becomes
PI, and converges in the finite number of iterations (contrary to the convergence of VI
in the limit of infinite time).
A practical corollary of this discussion is that having intermediate termination values will

be most efficient. In particular, having deterministic terminations is similar in effect to
“cutting” the trace parameter, which impairs the efficiency of multi-step operators, by
reducing the flow of information [Munos et al. 2016], and so may not be the best choice.
We will illustrate this point empirically in the next section.

4.3.4 Experiments
We aim to support the claim that in the planning setting, similarly to λ, intermediate
termination values, and in particular, soft (non-1) terminations in goal states are more
efficient. To better analyze the effects of the termination parameter, we do not consider
primitive actions in the option set.

Taxi

We consider the classical Taxi domain [Dietterich 2000] (Fig. 4.1). Here, the goal is
to navigate to one of the four target locations that contains the passenger, execute the
“pickup” action, navigate to the destination, and “dropoff” the passenger. The agent’s
state is the location of the taxi, the coordinates of the passenger’s origin and destination,
and whether the Taxi is full (i.e. if a successful pickup has been executed). There are 6
options: 4 that navigate to each of the target locations, as well as Put and Get macros,
which are comprised of navigating to the passenger’s origin resp. destination and executing
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Figure 4.1: Left. Taxi domain. The agent navigates between the 4 target locations,
executing pickups and drop-offs. Right. The contraction factor ξ from (4.13) in episodic

Taxi as a function of βgoal and βin (average across the 10 VI steps, γ = 0.9).

a dropoff resp. pickup actions. There is a step-negative reward, a penalty for illegal pickups
and dropoffs, and a reward for successfull transfers.3.
In order to capture the difficulties of long-term planning, we also consider an infinite

variant of the Taxi task: every time a passenger is successfully dropped off, a new task is
instantiated, with the new passenger origin and destination selected at random.

Details

The value function is initialized pessimistically4 with a mean of −1000 < −rmax/(1− γ)
and a standard deviation of 100. We report performance for the best-performing discounts
for each domain: γ = 0.9 for Taxi and γ = 0.99 for Infinite Taxi. We ran 10 and 30
value iteration steps for Taxi and Infinite taxi, respectively, with evaluation occuring every
1 or 2 iterations. Evaluation reports the cumulative rewards of running the greedy policy
over options for 500 (primitive) steps. Summary performance refers to an average reward
collected over all evaluation steps. All results are an average of 10 independent runs. We
evaluate all variants with a fixed set of deterministically terminating options, and only use
the termination schemes during planning.

3We use the values for these from the Taxi-v2 environment in OpenAI gym
4This is to comply with the convergence analysis. In practice, it does not influence the results signifi-

cantly.
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Figure 4.2: Left. Summary performance, average of 10 independent runs. The curves
are roughly U-shaped, and in particular the best-performing βgoal is less than one in all
cases. Note the difference in y-axes. Right. Learning curves for different values of βgoal

with the best value of βin for each. The shaded regions show standard deviation.
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Since the options are natively deterministic, it will be convenient to distinguish between
the values of β in and outside of the terminating regions. Letting Go denote the set of
terminating states of option o, we will write βogoal ≡ βosg for sg ∈ Go, and βoin ≡ βos for
s /∈ Go. We set the same parameters for all options, and so will drop the o superscript,
and simply refer to the values βgoal and βin.

Discussion

The contraction factor ξ from (4.13) depends on both the environment and option dy-
namics. The intuition for how βgoal and βin influence it is as follows: Since the agent
spends most of its time in non-goal states, βin has a stronger effect on ξ at each step,
while βgoal controls the span of ξ (see Figure. 4.1 for an illustration).
The results of our experiments are presented in Figure 4.2. In the tasks we considered,

we found it rarely useful to have βin (and hence c) to be large. This makes sense, since
our problems have a relatively small number of states, and the effect of efficient value
iteration is negligible. βgoal however obeyed the tradeoff we predicted readily, with its
intermediate values always outperforming the extremes.

4.3.5 Discussion
We have analyzed convergence properties of planning with options in terms of the ter-
mination condition parameter. We did so by making the analogy with λ-policy iteration
explicit. Our analysis and experiments suggest that intermediate values of β perform best,
and in general β should be treated as a parameter.

The learning setting The gating setting is particularly well-suited for planning, since it
entails the marginal policy κ, taken simultaneously from all states. When learning with
option models, call-and-return model of execution is assumed more commonly. In this
model the termination function controls the behavior of the agent, and κ is unlikely to be
possible to sample.5 In the rest of the chapter we will consider the call-and-return setting,
and observe the corresponding differences and similarities.

5Imagine a single never-terminating option: even if there are others in the set that can express the
optimal policy, the agent will never have a chance to take them.
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4.4 Learning with Options that Terminate Off-Policy
We are now ready to move on to our main contribution. Unlike what we have discussed so
far, in the call-and-return model of option execution, the solution is no longer indifferent
to the termination scheme. The main contribution of this chapter is proposing to decouple
the behavior termination condition from the target solution, and giving an algorithm that
achieves this.
We will first derive the fixed point of the classical call-and-return option operator. Using

its shape for intuition, we will then incrementally build up to our proposed off-policy termi-
nation option operator, starting from the classical intra-option equations. We will analyze
the convergence properties of this operator for both policy evaluation and control, and
state the corresponding online algorithm Q(β). Finally, we will validate Q(β) empirically.

4.4.1 The Call-and-Return Operator
In the call-and-return model of option execution, an option is run until completion (ac-
cording to its termination condition), and only then a new option choice is made [Precup
et al. 1998]. This suggests the following state-option analogues of the state-action tran-
sition operator from Eq. (2.10), and the Bellman operator from Eq. (4.8). For a policy
over options µ:

PµOq(s, o)
def=
∑
s′

P o(s, s′)
∑
o′

µ(o′|s′)q(s′, o′) (4.15)

T µO q(s, o)
def= Ros + PµOq(s, o). (4.16)

We wish to derive the fixed point of this operator, but at the primitive action resolution.
Let ν be an arbitrary policy over options, and c : S × O → [0, 1] a coefficient function.
Consider the following transition operator and its corresponding Bellman operator:

Pcνq(s, o) def=
∑
s′

pπ
o

ss′c(s′, o)
∑
o′

ν(o′|s′)q(s′, o′), (4.17)

T cνq def= crπ + γPcνq,

where rπ is the |S|×|O|-vector of rπo for all options. Note that T cν , like T π, is a one-step
operator, whereas T µO is an option-level operator. In particular, Pcν defines the following
operators corresponding to option continuation and termination, respectively:

P(I−β)ι(s, o) def=
∑
s′

pπ
o

ss′(1− βo(s′))q(s′, o),
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Pβµ(s, o) def=
∑
s′

pπ
o

ss′β
o(s′)

∑
o′

µ(o′|s′)q(s′, o′).

That is: ι (“iota”) is the policy over options that maintains the current (argument) option.
Using these operators, we can express PµO from Eq. (4.15) and the reward model from
Eq. (4.4) concisely for all state-option tuples:

PµOq = (I − γP(I−β)ι)−1γPβµq, R = (I − γP(I−β)ι)−1rπ,

and rewrite the option-level Bellman operator from Eq. (4.16):

T µO q = (I − γP(I−β)ι)−1(rπ + γPβµq). (4.18)

The following proposition derives the fixed point of T µO in terms of the one-step operators
T (I−β)ι and T βµ.

Proposition 4.3

The fixed point of T µO is the same as the fixed point of the operator T (I−β)ι + T βµ,
and writes:

qµ,ιβ = (I − γ(Pβµ − Pβι)− γPIι)−1rπ. (4.19)

Thus, the termination scheme directly affects the convergence limit: in the extreme, if
β = 0, options never terminate, and we have the fixed point of T Iι: qµ,ι0 (s, o) = vπ

o(s),
the value of the option o. In the other extreme, β = 1, the options terminate at every
step and we have the fixed point of T Iµ, which can be shown to correspond to the value
of the marginal policy κ from Eq. (4.5) (Prop 4.1):

qµ,ι1 (s, o) = vκ(s),∀o ∈ O. (4.20)

Comparison with the Gated Model

Before we proceed, let us briefly highlight the differences with the setting in the previous
section. Unlike the gated model, in which β transitioned between value and policy iteration,
in call-and-return we get a hybrid of value iteration and policy evaluation. First, consider
the λ-PI evaluation operator w.r.t. action-values q:

T πλ q = (I − γPλπ)−1(r + γ(Pπ − Pλπ)q), (4.21)

where again we write Pλπ = λPπ by an analogy with (4.17). The equations (4.18) and
(4.21) are still similar, but the key difference is the discrepancy between the policies ι and
µ. Since option continuation is non-myopic:

Pβµ = Pµ − P(1−β)µ 6= Pµ − P(1−β)ι,
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we achieve the fixed point from Prop. 4.3, instead of that of Prop. 4.1. This discrepancy
introduces off-policy-ness on the primitive action level, which we will discuss in detail
further. Similarly, in control, the operator

Mkq = r + γPβµkqk + γP(1−β)ιq,

replaces the mappingMkv = rκk+γpβκkvk+γp(1−β)κkv. The new operatorMk transition
between value iteration r+γPβµkqk and policy evaluation r+γP(1−β)ιq, which just eval-
uates the current option policy πo. At the primitive action level, this is crucial, since longer
options no longer imply more progress towards the solution, if πo is not aligned with it.

4.4.2 Off-Policy Option Termination
We would like to decouple the behavior termination condition ζ (“zeta”) that governs for
how long the options are followed from the target termination condition β that factors
into the solution. Apart from the theoretical appeal of the freedom that this allows, a
key motivation is the fact that on the one hand just like with multi-step returns, the less
options terminate the faster the convergence, but on the other the more options terminate,
the better the control solution (as we show formally in the next section). One possibility
to address this is to pick an intermediate behavior termination condition that trades these
off. If we are able to decouple the two, however, then we in fact achieve the best of both
worlds, which is exactly what we propose to do in this chapter.
The critical insight in our approach is the off-policy-ness at the primitive action level

that is introduced by the discrepancy between policies µ (that picks a new option) and
ι (that maintains the current option) in Eq. (4.19). The degree of this off-policy-ness is
modulated exactly by the termination condition β. In a nutshell, we propose to leverage
multi-step off-policy learning and correct some of the off-policy-ness, with the extent to
which we choose to do so determining the target termination condition ζ. In the extreme,
we can learn the marginal policy κ directly. In the other extreme, we can learn the value
of the current option. The two extremes are traded off via ζ. This algorithm is analogous
to the unifying algorithm Q(σ) in which σ modulates the degree of off-policy-ness [De
Asis et al. 2018, Sutton and Barto 2017].
This section will incrementally build intuition and formulate the proposed off-policy ter-

mination operator, while the next will analyze its convergence.
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Unifying Operator and Algorithm

Before we begin, we remind the reader of the general form of the operator (4.22) underlying
several off-policy return-based algorithms from the previous chapter:

Uq(s, a) def= q(s, a) + Eµ

∑
t≥0

γt
( t∏
i=1

ci

)
δt

 , (4.22)

Recently, [De Asis et al. 2018, Sutton and Barto 2017] formulated an algorithm that
can be expressed in a similar form, and unifies existing algorithms even more generally.
Instead of the binary taxonomy of on-and off-policy algorithms, the parameter σ smoothly
transitions between the two, for the following forms of δt and ci:

δt = Rt+1 + γ (σiq(St+1, At+1) + (1− σi)Eπq(St+1, ·))− q(St, At), (4.23)
ci = (1− σi)πb(Si, Ai) + σi, (4.24)

where as usual Rt+1 ∼ r(St, At). In particular, σ = 1 corresponds to the on-policy
SARSA(0) algorithm, while σ = 0 to Tree-Backup(0). In the following we will begin from
the standard intra-option equations, and using the general form of Eq. (4.22), arrive at
an analogous update to Eq. (4.23)-(4.24).

From one step intra-option learning to General Q(λ)

To begin, let us first re-derive the target from Proposition 4.3 starting from the familiar
intra-option equations [Sutton and Precup 1998]. Letting ∆ denote the update on the
estimated Q-function, we have at time t and the current option o:

∆q(St, o) ∼ Rt+1 + γq̃(St+1, o)− q(St, o), (4.25)
q̃(s, o) = (1− βo(s))q(s, o) + βo(s)Eµq(s, ·),

where as before we write Eµq(s, ·)
def=
∑
o µ(o|s)q(s, o). Notice that this is exactly a sample

of the one-step update corresponding to T (I−β)ι + T βµ. In fact, if we roll it out over
multiple steps we obtain Eq. (4.18) exactly:

q(s, o) = Eπo
[ ∞∑
t=0

γt
( t∏
i=1

(1− βo(Si))
)

[Rt+1 + γβo(St+1)Eµq(St+1, ·)]
]
, (4.26)

from which some simple algebra yields:

∆q(s, o) = rπo(s) + γEµq(S1, ·)− q(s, o) + Eπo
[ ∞∑
t=1

γt
( t∏
i=1

(1− βo(Si))
)
δµµt

]
, (4.27)
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δµµt = Rt+1 + γEµq(St+1, ·)− Eµq(St, ·).

This is the same update as Peng’s Q(λ) for greedy policies [Peng and Williams 1996] or
General Q(λ) (i.e. off-policy Expected SARSA(λ) [van Seijen et al. 2009]) for arbitrary
µ, with 1− βo(Si) being the state-option analogue of λ from those algorithms. The fixed
point of both of those algorithms is in fact derived in Proposition 3.1 from the previous
chapter and is indeed analogous to that given in Proposition 4.3 in this chapter.

General Q(λ) to Tree-Backup(λ)

Starting from the multi-step intra-option update, we wish to cast it in the form of the
general off-policy operator from Eq. (4.22). We do this by replacing the second expectation
in the TD-error with the point-estimate q(St, o), which introduces off-policy corrections
from the previous chapter. This gives us Eq. (4.27), but with δµt instead of δµµt :

δµt = Rt+1 + γEµq(St+1, ·)− q(St, o).

If we further augment the “trace” 1−βo(Si) with the policy probability coefficient µ(o|Si),
we obtain option-level Tree-Backup(λ) [Precup et al. 2000], whose target policy is µ, and
behavior policy is ι:

∆q(s, o) = Eπo
[ ∞∑
t=0

γt
( t∏
i=1

coi

)
δµt |S0 = s

]
, (4.28)

coi = µ(o|Si)(1− βo(Si)).

From the convergence guarantees of Tree-Backup, we know that this update converges to
the fixed point of T Iµ, which in turn corresponds to qκ (Eq. (4.20)).

The off-policy termination operator

We are now ready to present the operator underlying the Q(β) algorithm, which is the
key contribution of this chapter. Eq. (4.28) can be considered a special case where we
correct all of the off-policy-ness, thus implicitly assuming ζ = 1. To get the general
case, we need to split the target in each TD-error into two terms, that are weighted by
ζo(St) or (1 − ζo(St)):

Rµζ,βq(s, o) = q(s, o) +
∞∑
t=0

γtEπo
[( t∏

i=1
coi

)
δζ,µt

]
, (4.29)

δζ,µt = Rt+1 + γq̃(St+1, o)− q(St, o),
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Algorithm 3 Q(β) algorithm

Given: Option set O, target termination function ζ, initial Q-function q0, step-sizes
(αk)k∈N

1: for k = 0, 1, . . . do
2: Sample an option o from µk
3: Sample the return S0, R1, S1, R2 . . . , SDk from πo, Dk is determined by sampling

1− βo.
4: for t = 0, 1, . . . Dk − 1 do
5: qk+1(St, o)← qk(St, o) + αk∆t

6: ∆t =
∑Dk−1
i=t γi−t

(∏i
j=t+1 c

o
j

)
δζ,µkt

7: δζ,µkt = Rt+1 + γq̃µk(St+1, o)− q(St, o)
8: q̃µk(s, o) = [1− ζo(s)]q(s, o) + ζo(s)Eµkq(s, ·)
9: coj = ([1− ζo(Sj)] + ζo(Sj)µ(o|Sj)) .
10: end for
11: end for

q̃(s, o) = [1− ζo(s)]q(s, o) + ζo(s)Eµq(s, ·),
coi = ([1− ζo(Si)] + ζo(Si)µ(o|Si)) (1− βo(Si)).

We will drop the β superscript, and simply write Rµζ when β is clear from context, or not
relevant. Note that the first factor in coi is explicit, while 1− βo(Si) is sampled from the
current option during learning. Algorithm 3 presents the forward view of this algorithm
for the general case of an evolving policy µk.
This algorithm is a very similar to the recently formalized Q(σ) [Sutton and Barto 2017,

De Asis et al. 2018], in which σ controls the degree of off-policy-ness. There, σ = 1
corresponds to SARSA, and σ = 0 to Tree-Backup. The parameter ζ is the state-option
generalization of 1 − σ, with ζ = 0 learning the value of the current option o (i.e. the
policy ι), and ζ = 1 the value of the marginal policy κ (i.e. the policy µ). The behavior
termination β on the other hand has a role analogous to that of the eligibility trace
parameter λ.

Relationship with intra-option learning

The off-policy-ness discussed so far is subtly different than that in the more familiar off-
policy intra-option setting. The intra-option learning algorithm suggests applying the
update (4.25) (in its one-step form) to all options o “consistent with” the experience
stream S1, A1, . . . [Sutton and Precup 1998]. For stochastic policies this amounts to
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applying importance sampling to the update. That is, given a behavior option b, the trace
coefficient 1 − βo(Si) from Eq. (4.25) now becomes

cobi = πo(Ai|Si)
πb(Ai|Si)

(1− βo(Si)). (4.30)

Writing βot+1 for βo(St+1), the value for option o writes:

q(s, o) =
∞∑
t=0

γtEπb
[( t∏

i=1
cobi

)
[Rt+1 + γβot+1Eµq(St+1, ·)]

]
Now, notice that there are two sources of off-policy-ness in these formulas. One is πb vs.
πo, the contrast between option policies, and the other is in the target: ι vs. µ itself.
Indeed if we write the above in a form from Eq. (4.27) we get a different correction:

∆q(s, o) = rπo(s) + γEµq(St+1, ·)− q(s, o) + Eπb
[ ∞∑
t=1

γt
( t−1∏
i=1

cobi

)
(1− βo(St))δobt

]
,

δobt = πo(At|St)
πb(At|St)

[Rt+1 + γEµq(St+1, ·)]− Eµq(St, ·).

Since the corrections for the two sources of off-policy-ness are orthogonal, it could be
possible to combine them. We leave this for the future.

4.4.3 Analysis
In this section we will analyze the convergence behavior of the off-policy termination
operator in both policy evaluation and control, and show that learning about shorter
target options off-policy is generally asymptotically more efficient than on-policy. We will
then consider the relationship of the solution quality in control with option duration, and
show that shorter options generally yield better solutions.
We will prove that the evaluation operator Rµζ is contractive around the appropriate fixed

point, and that its contraction factor is less than that of the respective on-policy operator,
if the target options terminate more than the behavior ones.

Theorem 4.2: Policy evaluation

The operator Rµζ defined in Eq. (4.29) has a unique fixed point qµ,ιζ , as defined
in Eq. (4.19). Furthermore, if for each state Si ∈ S and option o ∈ O we have
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coi ≤ (1− ζo(Si)) + ζo(Si)µ(o|Si), then for any Q-function q:

|Rµζ q(s, o)− q
µ,ι
ζ (s, o)| ≤ η(s, o)‖q(s, o)− qµ,ιζ (s, o)‖,

where η(s, o) def= 1− (1− γ)Eπo
[∑∞

t=0 γ
t
(∏t

i=1 c
o
i

)]
≤ γ.

Proof. The proof is analogous to that of Theorem 1 from [Munos et al. 2016] and is given
in appendix.

The contraction coefficient η controls the convergence speed of this operator: the smaller
η (and the larger

∏t
i=1 c

o
i ) the fewer iterations are needed to converge, but the larger the

computational expense when planning, or the variance when learning [Bertsekas and Ioffe
1996, Munos et al. 2016]. Since coi ≤ 1, and options terminate eventually, the variance
is less significant here, and generally, larger coi will yield faster convergence. In our case,
since a behavior option is assumed (i.e. the (1 − βoi ) factor in Eq. (4.29) is fixed), the
additional ζ-term in coi can only reduce the existing trace. However, since we are interested
in learning about a different target, we ought to compare traces with the setting when
that target is learnt on-policy. The following corollary derives the condition when Q(β)
maintains larger traces than its on-policy counterpart.

Corollary 4.1

The convergence of the iteration corresponding to the operator Rµζ,β defined in
Eq. (4.29) is faster than that of its on-policy counterpart Rµζ,ζ , if

ζo(s) ≥ 1− µ(o|s)(1− βo(s))
µ(o|s)(1− βo(s)) + βo(s) .

In particular βo(s) = 0, any ζo(s) > 0 satisfies this, irrespective of µ. If µ is deterministic,
this holds for all ζo(s) > βo(s) for the chosen o. In general, the intuition here is that it’s
easier to learn from longer option traces about shorter options than vice versa.
Let us now formulate the control analogue of Theorem 4.2. Note that Assumption 4.1

is no longer required. As before we consider convergence to the best policy expressible
by options: q∗O = maxµ qµ,ιζ .
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Theorem 4.3: Control

Consider a sequence of policies over options (µk)k∈N that are greedy w.r.t. the se-
quence of estimates (qk)k∈N, and consider the update:

qk+1 = Rµkζ qk,

where the operator Rµkζ is defined by Eq. (4.29) for the k-th policy µk. Let T µ,ιζ q
def=

T (I−ζ)ιq + T ζµq. Suppose that T µ0,ι
ζ q0 ≥ q0. Then for any k ≥ 0,

‖qk+1 − q∗O‖ ≤ γ‖qk − q∗O‖.

It follows that qk → q∗O as t→∞.

Proof. The proof is a simpler version of that of Theorem 2 from [Munos et al. 2016], and
we omit it here.

We do not give a proof of online convergence at this time, but verify it empirically in
our experiments.

Option duration and solution quality

Our convergence results show that learning about shorter options off-policy is more efficient
than on-policy. Here, we motivate why one would want to learn about shorter options in
the first place. In particular, we will show that given a set of options, the more they
terminate, the better the resulting control solution at the primitive action resolution.
Intuitively, this is because upon termination, the learner picks the current best option,
whereas during option execution, the target value includes the potentially suboptimal
current option (Proposition 4.3). The following theorem formalizes this intuition (proof in
appendix), and may be of independent interest.

Theorem 4.4: The more options terminate, the better the solution.

Given a set of options O, and a greedy policy over options µ. Let ζ ≥ β be two
termination conditions for the options in O. Then: qµ,ιζ ≥ qµ,ιβ .

Note that this result refers to the target solution. During learning, the more decisions
there is to make, the more potential there is for error. As such, in reasonably complex
tasks we expect the performance to obey a tradeoff on ζ.

82



4.4. LEARNING WITH OPTIONS THAT TERMINATE OFF-POLICY

4.4.4 Experiments
Finally, let us evaluate our algorithm empirically. We aim to illustrate the following claims:

• The learning speed improves as β gets smaller.
• The control performance improves, as ζ gets larger.
• Q(β) converges with off-policy terminations

Figure 4.3: The 19-state random walk task. The agent starts in the middle. Transitions
are deterministic, and the task terminates in each end.

For simplicity, we assume that options terminate deterministically in a set of goal states.6
We hence reduce ζ and β to single parameters that determine the likelihood of terminating
before reaching the goal. The “plain” variant refers to the on-policy intra-option update
from Eq. (4.26).

Policy evaluation

First, we show that Q(β) learns the correct values on the 19-state random walk task
(Figure 4.3). There are two options, one leads all the way to the left, the other to the
right. The policy over options is uniform. The task is to estimate the value function
w.r.t. target terminations ζ. The results are given in Figure 4.5. Q(β) is able to learn
the correct values (up to an irreducible exploration-related error). As expected, Q(β) gets
more efficient as behavior options get longer (β gets smaller). The opposite is true for
the plain algorithm, since without interrupting sufficiently, it does not have a chance to
update the intermediate states with anything other than the option policy. There is a small
inflection point in the performance of the plain algorithm at the on- policy value of β.

Control

To demonstrate the benefit of decoupled off- and on- policy terminations, we compare
our algorithm with the plain on-policy variant (labelled: onpolicy-plain) that uses β = ζ

6Note the difference with the setting in the first part of the chapter, where we considered probabilistic
goal terminations. In the learning call-and-return setting, where terminations are sampled and a new
option is not chosen until the current one has terminated, probabilistic goal terminations simply cause the
agent to unproductively jitter around the goal region.
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S

G

Figure 4.4: Left: The modified cliffwalk task. Shaded regions are cliffs. Right: Pinball
domain configuration used. The red ball must be moved to the blue hole. Each black

diamond indicates an option landmark.

during both learning and evaluation. In order to demonstrate that the learning target plays
a role, we also compare it with the plain algorithm that uses ζ at evaluation only (labelled:
offpolicy-plain). The behavior β = 0, unless specified otherwise.

Modified Cliffwalk We illustrate the benefits of off-policy termination on a modified
Cliffwalk example. The agent starts in a position inside a n × n grid with the goal of
getting to a corner where a positive reward is given. The step reward is zero, but there are
small cliffs along the border that aren’t fatal, but induce a penalty. We have four options,
one for each cardinal direction, that take the agent up until the corresponding border (and
cliff). Thus, while these options are able to learn to reach the goal in an optimal number
of steps, they are unable to learn the optimal policy which only moves inside the grid, so
as to not encounter cliffs. To ensure adequate exploration we consider εopt-soft option
policies, as well as a usual ε-greedy policy over options during learning (but not during
evaluation). The results are plotted in Fig. 4.6. Q(β) outperforms the alternatives in all
cases, and its performance improves with larger ζ. Note that is the only variant able to
surpass the value of the suboptimal policy.

Pinball We finally evaluate our algorithm on a variation of the Pinball domain [Konidaris
and Barto 2009]. Here, a small ball must be maneuvered through a set of obstacles into a
hole. Observations consist of 4 continuous variables describing the ball’s x, y positions and
velocities. There are 5 primitive actions: the first 4 actions apply a small force to either the
x or y velocity, the final action leaves all velocities unchanged. There is a step penalty and
a final reward. We define a set of landmark options [Mann et al. 2015] that move the ball
near a target goal location on the board. The agent can initiate and terminate each option
from within some initiation and termination distances from the respective landmark. To
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Figure 4.5: Prediction error on the 19-state chain task. Each variant is an average of 10
seeds. Left: Sum error for each β-ζ combination. Q(β) always gets more efficient as β

decreases (the options get longer). Right: Example learning curves. The lines
corresponding to ζ = 0.1 are outside the axes’ bounds. The shaded region covers

standard deviation.

illustrate the benefits of terminating suboptimal options, landmarks were placed in such a
way that the paths from start to the goal via the landmarks are suboptimal. The results are
plotted in Fig. 4.7. As expected, the performance of Q(β) improves with longer options.
The target solution on the other hand is best for intermediate ζ-s. In a comparison, Q(β)
outperforms the on-policy variant that learns with β = ζ. However, in this domain, the
off-policy variant (that learns with β = 0, but evaluates with ζ) performs comparably to
Q(β). This may in part be due to the use of function approximation, whose generalization
allows the plain target to update meaningfully within the option trajectory, and in part due
to the noisy nature of Pinball, in which there are many optimal policies of similar values.
Since, as we have seen, Q(β) is the only variant to learn accurate values, we expect it to
stand out more in settings where the reward scheme is more intricate.

4.4.5 Details
The setting is as follows: an option o is picked according to µ, and a trajectory s,R1, S2,

R2, . . . , RD−1, SD is generated according to πo and βo. Then for each state Si in the
trajectory q(Si, o) is updated according to the considered algorithm.

19-chain ζ and β are evaluated in the range of {0.1, 0.5, 0.8, 1}, and the step-sizes set
via a linear search over α ∈ {0.1, 0.2, 0.3, 0.4}. The termination conditions ζ and β are
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Figure 4.6: Control performance on Cliffwalk. Each variant is evaluated on 5 seeds for 10
runs each. Left: Average performance per value of ζ on all seeds. Right: Learning

curves for the best seeds per variant. Notice how Q(β) is the only variant that escapes
the plateau of the suboptimal policy.

Figure 4.7: Control performance on Pinball. Each variant is evaluated on 20 independent
runs. Left: Influence of ζ and β on Q(β): performance improves as β gets larger;

intermediate target ζ-s are best. Right: Comparison within the variants.
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evaluated in the range of {0.1, 0.5, 0.8, 1}, with the first value being positive to ensure
adequate state visitation. The discount factor γ = 0.99.

Modified Cliffwalk The reward scheme is: rgoal = 10 and rcliff = −2, and the grid
size n = 10. We set ε = 0.1, and εopt = 0.3, and determine the step-size for each variant
from a linear search over α ∈ {0.1, 0.2, 0.3, 0.4}, behavior β = 0, and target ζ is evaluated
on the range of {0, 0.5, 0.8, 1}. The discount factor γ = 0.99.

Pinball The reward is -1 on every step, except the final step which receives a reward of
10000. We use initiation distance of 0.3 and termination distance of 0.03. The state option
value function was approximated using tile coding with 16, 10 by 10 tilings. All algorithms
used a learning rate α = 0.01, discount γ = 0.99 and an exploration rate ε = 0.05 and
εopt = 0.01 during learning. The target ζ is evaluated on the range of {0, 0.3, 0.5, 0.8, 1}.

4.4.6 Discussion
We propose decoupling behavior and target termination conditions, like it is done with
policies in off-policy learning. We formulate an algorithm for learning target terminations
off-policy, analyze its expected convergence, and validate it empirically, confirming the
theoretical intuition that learning shorter options from longer options is beneficial both
computationally and qualitatively. More generally, we cast learning with options into a
common framework with well-studied multi-step off-policy temporal difference learning,
which allows us to carry over existing results with ease.

Learning longer options from shorter options. We have assumed here that the options
are given, but may not express the optimal policy well. This scenario applies when the
options describe simple rules of thumb, or are transferred from a different task. If the
options are not given, but learnt end-to-end, our wish typically is to distill meaningful
behavior in them. However, instead, the result often ends up reducing to degenerate
options [Bacon et al. 2017, Mann et al. 2014]. Being able to impose longer durations on
the target off-policy may mitigate this. Though it should be noted that our convergence
results suggest that learning may not be as efficient then.

Action-level importance sampling. The option policy term in the trace is ambivalent
to the action choice. Thus if µ(o|Si) is small, coi will be small, even if the taken action is
consistent with the option policy πo. It would be interesting to replace this term with the
importance sampling ratio at the primitive action level, like κ(Ai|Si)

πo(Ai|Si) , which corresponds to
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another multi-step off-policy algorithm, Retrace(λ) [Munos et al. 2016]. Another direction
towards this goal is to incorporate the intra-option correction from Eq. (4.30).

Limitations. Proving online convergence of Q(β) in the control setting remains an open
problem. The technical issue is that a certain matrix in the proof of Theorem 4.3 is not a
contraction unless an additional assumption holds, such as the asymptotic commutativity
assumption 3.2 from Chapter 3 which unfortunately does not apply in this case. Supported
by reliable empirical behavior, we hypothesize that convergence holds under reasonable
conditions and plan to investigate it further in the future.

4.5 Related Work
Much of the related work has already been discussed throughout. We mention a few more
relevant works below. In general, the analysis in our work is related to that in λ-operator
literature [Bertsekas and Ioffe 1996, Munos et al. 2016, Scherrer 2013], while the intuitions
to options literature [Mann et al. 2015, Bacon and Precup 2015, Bacon and Precup 2016].
[Bacon and Precup 2016] analyze the policy evaluation setting, derive Proposition 4.1

and show that the options operator (4.18) induces a matrix splitting. In an earlier work,
[Bacon and Precup 2015] argue that the main computational expense when planning, is the
deliberation of choosing an option, and point out that more terminations incur a higher rate
of deliberation, which is computationally expensive. Off-policy terminations allow to lower
the cost of deliberation during learning (which is when the bulk of computation happens).
[Mann et al. 2015] give concentrability coefficients for convergence of approximate value

iteration with options. Their Section 3.2 conveys intuitions similar to the ones found here,
but does so from the semi-MDP view. While they also consider option durations, they do
not express them in terms of the termination function. It would be interesting to reconcile
these two lines of analysis.
[Yu and Bertsekas 2012] consider general λ-operators with state-dependent λ, with Sec-

tion 5.1.1 specifically discussing λ-PI. In the case of options, 1 − βo takes the role of
a state-option-dependent λ. [White 2017] proposed to consider 1 − βo as part of the
transition-based discount instead.
[Mann et al. 2014] propose an algorithm for multi-step option interruption that stems

from the same motivation of mitigating poor-quality options. In order to avoid the resulting
options being too short, they introduce a time-regularization term. Our approach bypasses
the need to do so by interrupting off-policy and the ability to explicitly specify target
terminations.
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4.6 Summary
In this chapter, we have drawn parallels between planning and learning with options and
multi-step temporal differences, and leveraged them to gain insights about the qualitative
and quantitative influence of the option termination condition β.
We showed that planning with options in the gated model corresponds to λ-policy iter-

ation, and gave new convergence results in terms of the termination condition parameter.
Our analysis and experiments suggest that intermediate values of β perform best, and in
general β should be treated as a parameter.
In call-and-return, where the termination condition is coupled with the solution directly,

there is an additional tradeoff imposed by the relationship of β with the quality of the
solution. Using the intuition that the underlying algorithms are inherently off-policy at the
primitive action level, we suggest a new algorithm that escapes that tradeoff by learning
the solution w.r.t. any termination condition, irrespective of the one used for behavior.
We demonstrate the benefits of doing so empirically.
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5 | Discounting Options

The previous chapter provided insights into what the effects of longer multi-step actions,
or options, really are. In this chapter, we take that question a level deeper, and step
outside the standard options framework. Sidestepping the usual assumption that options
live on a shared clock, we ask: what happens when each option decides its own timescale?
Is option duration sometimes irrelevant, so long as its goal is achieved? This chapter
analyzes the answers to these questions.

5.1 Introduction
The discount factor γ in reinforcement learning is traditionally treated as something in
between a mathematical convenience and a meaningful time horizon parameter. Indeed,
the instrumental variable in learning: the discounted return

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

is roughly capable of representing a horizon of 1
1−γ steps, while the convergence speed is

strongly related to that same quantity. This makes it challenging to learn about very distant
goals in a feasible amount of time. While there have been important generalizations of
the naive constant γ to state-, state-action, or transition-based matrices [Yu 2015, White
2017], little has been done in the way of concrete instantiations. In this chapter, we propose
a mechanism for extending the agent’s horizon by tying discounting in with temporal
abstraction, in particular the options framework [Sutton et al. 1999].
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Options induce reward and transition models that act as higher-order analogues of those
from the primitive MDP. The discount factor is an integral part of these models – indeed
the previous chapter drew the clear parallels between options and multi-step temporal
difference methods. As such, an option that takes a hundred steps incurs an associated
factor of γ100, and hence, regardless of the sophistication of our options, if they are long,
we remain at the mercy of the step-discount capturing the necessary horizon. On the one
hand, this ensures the consistency of options with one-step methods, on the other: the
fact that the agent’s horizon is ambivalent to the use of options is highly unsatisfying, as
temporal abstraction offers no additional temporal representation power.
In this chapter, we propose to address this by generalizing the options framework to allow

for time dilation. In particular (1) we allow the step-discount in the option transition model
to be independent of that in the environment, and (2) so as to mitigate the resulting bias,
we introduce an option-level discounting matrix Γ that augments the transition model
irrespectively of option duration. This simple generalization allows for options to extend
the agent’s horizon, while preserving desirable convergence properties.
We analyze the properties of planning with such time-dilated options and devise novel

bias-variance bounds that apply to the classical framework, as a special case. In particular,
we show that larger step-discounts in the transition model actually reduce the variance of
the estimated solution, which is contrary to the familiar intuitions about e.g. multi-step
returns. This is the case in particular due to the variance incurred by the random duration
of an option. Notably, we verify the shape of the bounds empirically on a classical problem.
Time dilation provides a vehicle for extending the agent’s horizon proportionally to the

options it has available, and gives options the power to “abstract away” time. One simple
illustration of where this is crucial is a setting of multiple versions of the same task of
varying sizes, whose solution over options is the same, but where option length reflects
the size of the task. Time dilation allows for the same policy over options to be learnt
irrespectively of the size of the task, while any “flat” discount will fail to capture this policy
for some size of the task. We discuss this in more detail in Section 5.3.1, and illustrate
it with an empirical example in Section 5.6.2.

5.2 Notation and Setting
Throughout, we parameterize the models and operators with by the associated discount:

P oγ (s′|s) def= ED:s→s′|o
[
γD
]

(5.1)

Roγ(s) def= ED:s|o

[
D∑
i=1

γi−1rπ
o

(St+i)|St = s

]
(5.2)
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PµOγ q(s, o)
def=
∑
s′

P oγ (s, s′)
∑
o′

µ(o′|s′)q(s′, o′) (5.3)

T µOγ q(s, o)
def= Roγ(s) + PµOγ q(s, o). (5.4)

where, as before, ED:s|o [·] and ED:s→s′|o [·] are the expectations of the option duration
D from state s and the travel time between state s and s′, respectively, w.r.t. option
dynamics pπo and the termination condition βo.
We distinguish the MDP discount factor by γenv. We will occasionally consider settings

where the agent seeks to optimize policies over a very long, nearly undiscounted horizons
of γeval >> γenv. We say that a discount γ is able to represent a policy w.r.t. γ′ > γ

if π∗γ = π∗γ′ .

5.3 Discounting Options
Now let us motivate and formalize introducing time dilation into the options framework.
We first discuss in further detail the effect that the discount has on the policy learnt by
an agent, and how it persists despite the use of options. We then describe time dilation
and discuss how it alleviates the issue.

5.3.1 Horizon Length and Discounting
Let us leave the options framework for a moment, and consider the following example.
The agent needs to choose between a closer, worse goal with a reward of z and a farther,
better goal with a reward of Z > z.1 Now, consider the role of the discount factor γenv
in this decision. In order for the agent to pick the higher reward, it would need

γDenvZ > γdenvz,

where D and d are the distances from Z and z to the agent’s location. Thus, there is
a minimum value of

γenv >
( z
Z

) 1
D−d (5.5)

required to represent the optimal policy π∗γeval . See Figure 5.1 for an illustration.
Now, consider the same task, but abstracted. Instead of primitive actions, we have d

and D options separating the agent from the respective goals, and so on a trajectory
1Assume the step reward to be zero, and the environment to be deterministic.
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Figure 5.1: The agent needs to choose between a closer, worse goal with a reward of z
and a farther, better goal with a reward of Z > z. The lines represent the values of the
left and right actions split at the agent’s location and w.r.t. two different discounts. The
outcome of the agent’s choice in the current location thus depends on the discount: the
red discounting scheme of γenv = 0.95 is too short-sighted to prefer the correct goal Z.

Note that for any discount γenv < 1, the distances d and D can be proportionally
increased (to d+K and D +K for some K <∞) for γenv to be insufficient to capture

the correct ordering of the goals.

S0, S1, . . ., instead of γenv, we have P oγenv (Si+1|Si) discounting at each step i. The same
condition (5.5) (but in matrix form) then is required of P o:

‖P oγenv‖∞ >
( z
Z

) 1
D−d

. (5.6)

We would like for this condition to hold irrespectively of the length of the options, so long
as the plan over them retains the same shape. However, despite the number of decisions
(over options) remaining the same, an increased number of steps causes ‖P oγenv‖∞ to get
smaller, and eventually stop satisfying Eq. (5.6).2 Hence, the policy over options remains
tied critically to the step-discount.

5.3.2 Options with Time Dilation
We suggest to allow the option transition model to dilate time by varying its associated
step-discount from γenv to γo. In order to mitigate the bias that this introduces, as well as

2To see this note that γLenv ≤ ‖P oγenv‖∞ ≤ γ`env , where ` and L denote minimum and maximum
option durations. As such, for any value γenv < 1 there is an option duration L for which Eq. 5.6 is not
satisfied, in particular when γLenv <

(
z
Z

) 1
D−d .
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Figure 5.2: The shape of the coefficients induced by different constant values of Γ and γ
for random option durations drawn from a Poisson distribution with λ = 10. The spikes
represent a new option choice, and are induced by the fact that there is now discrepancy
between the discounting in the transition and reward models. The reward model remains

unchanged and discounted with γenv.

ensure favorable convergence guarantees, we additionally impose an option-level discount
Γo. This replaces Eq. (5.1) with the following:

P oΓγ(s′|s) def= Γoss′ED:s→s′|o
[
γDo
]
. (5.7)

We will use the Γγ suffix to denote models of this form. Since our focus is extending the
agent’s horizon, we will always consider γo ≥ γenv. Clearly P oΓγ = P oγenv if γo = γenv
and Γ = I. Figure 5.2 plots a simple instance of the coefficients induced by this manner
of discounting. The two-timescale structure is incurred due to the discrepancy between
the reward model (which is still discounted with γenv) and the transition model. Such
structure is particularly relevant when good options are known, and a policy over options
captures the desired policy well.
We will show that γo imposes a bias-variance tradeoff on the complexity of estimating the

transition model and the solution it incurs. In the extreme, if γo = 1, all of the variance of
a given transition s, s′ associated with the random variable D that determines the number
of steps from s to s′ is removed. When compared to the target w.r.t. the native γenv, this
comes at the cost of introducing bias which is in terms of the distance of γenv and γo. The
additional option-level discount Γo can help reduce this bias. In fact, we show that there is
a value of Γo for which the bias is zero, which occurs when Γo captures P o in some sense.
The new option model allows one to effectively redefine the primitive resolution of the

agent, simply by considering γo = 1. This in turn provides options with the power to
represent policies over horizons that would otherwise be too large to capture with a fixed
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step-discount. Indeed, consider the example from above but with P oΓγ with γo = 1, in
place of P oγenv . Then, ‖P

o
Γγ‖∞ = ‖Γo‖∞ becomes independent of the step-discount, and

able to represent the same policy over options regardless of their length. This is one of
the key motivations of our approach.
Note that the reward model of the agent remains unchanged, and hence the new options

are internally inconsistent. In the next section we derive an equivalence with a step-
discounted setting with consistent options, that is: ones with transition and reward models
discounted on the same scale.
For the sake of simplicity, throughout the rest of the chapter we take γo = γ to be

the same for all options, but all of the results can be transferred to the general case of
option-dependent γo.

Terminal state option-level discount

Although we introduce the framework for the general case of a full Γo matrix, it is more
practical both in theory and practice to consider a diagonal Γo that specifies a common
option-level discount upon arrival to a state s′, regardless of where the trajectory started.
Let Γo be a |S|×|S| diagonal matrix whose entries are in [0, 1], s.t. Γo(s′) (or Γos′) denotes
the discount upon arrival at state s′. This form of Γo lets us rewrite P oΓγ in an intuitive way:

P oΓγ(s′|s) = γΓos′βos′
(
pπ

o

ss′ + γ
∑
s′′

pπ
o

ss′′(1− βos′′)
(
pπ

o

s′′s′ + γ
∑
s′′′

pπ
o

s′′s′′′(1− βos′′′) (. . .)
))
.

This equation makes it evident that Γo thus controls the inter-option discounting of an op-
tion o, while γ is the intra-option discount that accounts for the variability in the trajectory.
We return to the full matrix view briefly in Section 5.5.2.

5.4 Convergence Analysis
In this section we will derive an equivalence from the model we propose to a step-discounted
setting with consistent options, and use it to prove expected convergence under mild
conditions. Our analysis both here and in the next section is for the policy evaluation
setting of a fixed policy µ, but our experiments test the control setting, and illustrate the
insights found in the theory.
Let us write the new option operators. Note that we continue using Roγenv , since time

dilation does not affect the reward model. We have:

PµOΓγ
q(s, o) =

∑
s′

P oΓγ(s, s′)
∑
o′

µ(o′|s′)q(s′, o′), (5.8)
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T µOΓγ
q(s, o) def= Roγenv (s) + PµOΓγ

q(s, o). (5.9)

We can show that T µOΓγ
is a contraction so long as a discounted terminating state is

reachable. The assumption that options have finite duration is standardly imposed, here
we only require that there is a chance for an option to terminate in a state whose discount
is less than one.

Assumption 5.1

For each o ∈ O and for each s ∈ Io, the initiation set of o, ∃s′ that is reachable by
πo, s.t. βos′ > 0 and Γos′ < 1, or γ < 1.

The following theorem proves that T µOΓγ
is a contraction, and derives the equivalent prob-

lem with a modified reward model, termination scheme, and a generalized step-discount.

Theorem 5.1

The operator T µOΓγ
from Eq. (5.9) is a contraction for γ < 1 or if a reachable

terminating state with Γs′ < 1 exists (Assumption 5.1). The fixed point of T µOΓγ
is

equivalent to that of a κ-discounted options operator T µOκ from Eq. (5.4) for

κ(s, o, s′) = γ(Γos′βos′ + 1− βos′) = γ(1− βos′(1− Γos′)) ≤ γ,

w.r.t. a scaled reward function:

zπ
o

= (I − γp(1−β)πo)(I − γenvp(1−β)πo)−1rπ
o

,

and termination schemes
ζos′ = Γos′βos′

Γos′βos′ + 1− βos′
,

where as before we write p(1−β)πo
ss′

def= (1− βos′)pπ
o

ss′ .

This theorem implies that the step discount is controlled by Γo, γ, but also βo. This is
appropriate, since βo controls the inner timescale of an option. For example, if γ = 1 and
Γos′ = 0 for some s′, the discount at s′ is 1 − βos′ exactly.
On the other hand, the value of Γ directly impacts the new implicitly induced termination

scheme. For example, if Γos′ = 0 and no bootstrapping occurs, then ζ accounts for it by
not permitting any termination. In general, it can be observed that any Γos′ < 1 implies
ζos′ < βos′ , and hence a solution w.r.t. less terminating, longer options.
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5.5 The Bias-Variance Tradeoff in the Option Transition
Model

We will now analyze the computational effects of allowing for time dilation in the option
transition model. We will show that considering a larger discount in the transition model
generally reduces variance, but at the cost of introducing bias. The inter-option discount
Γ then helps control this bias, with a particular shape of Γ removing it altogether.
We will show that varying γ in PµOγ from Eq. (5.3), and more generally replacing PµOγenv

with PµOΓγ
from Eq. (5.8) induces a novel bias-variance tradeoff on the approximate loss

when PµOΓγ
is estimated from samples.

Let

qµγenv = (I − PµOγenv )−1Rγenv , qµΓγ = (I − PµOΓγ
)−1Rγenv , qµ

Γ̂γ
= (I − P̂µOΓγ

)−1Rγenv ,

where P̂µOΓγ
is the approximate transition model estimated from samples. The approximate

loss has the following form:

E = ‖qµ
Γ̂γ
− qµγenv‖ = ‖qµ

Γ̂γ
− qµΓγ + qµΓγ − q

µ
γenv‖

≤ ‖qµ
Γ̂γ
− qµΓγ‖︸ ︷︷ ︸
Eestim

+ ‖qµΓγ − q
µ
γenv‖︸ ︷︷ ︸

Etarg

, (5.10)

The first term Eestim here is the estimation error that contains the variance, while the
second term Etarg is the bias in the targets. We will analyze them separately below.

5.5.1 Variance
It is widely known that larger discounts, and larger eligibility traces typically incur more
variance [Jiang et al. 2015b, Petrik and Scherrer 2009, Kearns and Singh 2000]. In
the case of options, somewhat counterintuitively, it is also the case that larger transition
discounts γ incur less estimation variance, when sufficiently large. This becomes evident
when considering γ = 1, for which the variance in γD due to the random length of the
trajectory is entirely removed. The reason this seems at odds to our knowledge of variance
properties of e.g. λ-returns is because the variance incurred by random option duration is
not present there. We have the following result (proof in appendix):
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Lemma 5.1

Let dmin and dmax be the minimum and maximum option durations across the option
set O, and let Γmax be the maximum inter-option discount Γmax = maxo∈O ‖Γo‖1.
Let each P oΓγ be estimated from n i.i.d. samples, and let Roγenv be given. Then, for
any policy µ, with probability 1− δ:

Eestim = ‖qµ
Γ̂γ
− qµΓγ‖ ≤

rmax

1− γenv
BΓγ

√
1

2n log 2|S||O|
δ

,

BΓγ = Γmax(γdmin − γdmax)
(1− Γmaxγdmin)2 . (5.11)

The factor BΓγ from Eq. (5.11) thus monotonically increases with Γmax, and monoton-
ically decreases with γ, when γ is large. See Fig. 5.3 for example shapes. We will observe
this behavior empirically on a control task.

5.5.2 Bias
Now, let us turn to the error Etarg incurred by the discrepancy in the targets.

Lemma 5.2

Let dmin and dmax be the minimum and maximum option durations across the option
set O, and let Γmax be the maximum inter-option discount Γmax = maxo∈O ‖Γo‖1.
Let µ be a policy over options and consider the difference in the value of µ w.r.t. the
option models {(Roγenv , P

o
γenv )}o∈O and {(Roγenv , P

o
Γγ)}o∈O. We have:

Etarg = ‖qµΓγ − q
µ
γenv‖∞ ≤

rmax
(
(γ − γenv)(γdmin + 1) + γ(1− Γmax)

)
(1− γenv)2(1− Γmaxγdmin) .

Consider the second factor in the numerator of the bound. It is in turn composed of two
terms, one that reflects the difference between γ and γenv, and another additive term that
has to do with the inter-option discount Γ. If Γmax = 1, and there is no inter-option
discounting, this term vanishes, and the error reduces to that incurred by the difference
in the discounts. Otherwise, there is some bias introduced by Γmax 6= 1, and some bias
introduced by γ 6= γenv. Even though the worst-case bound is additive, these biases can
sometimes be “in opposite directions”, and reduce the overall error when compared to
either one in isolation. In fact, there is a value of Γ that reduces bias all the way to zero,
even if γ 6= γenv. The following proposition derives a sufficient condition for this.
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Figure 5.3: BΓγ from Eq. (5.11) for dmax = 10 and different values of dmin. We see that
there is a decrease in variance near γ = 1. Note that the lower values of γ corresponding

to the other low-variance region may not be sufficient to represent complex policies.

Proposition 5.1

If Γo = (P oγ )−1P oγenv , there is no bias in the value function, regardless of γ.

Note that in order for the form of Γo from this proposition to hold, Γo must be a full (rather
than diagonal) matrix, whose value is closely related to that of the option transition model3
While it is unlikely to be able to achieve this, even an approximate Γo can help balance
the bias. We leave a precise characterization of the general case of this for the future.
Finally, from Eq. (5.10) and Lemmas 5.1 and 5.2, we have our result:

Theorem 5.2

Let dmin and dmax be the minimum and maximum option durations across the option
set O, and let Γmax be the maximum inter-option discount Γmax = maxo∈O ‖Γo‖1.
Let µ be a policy over options, and let each P oΓγ be estimated from n i.i.d. samples.
Then, with probability 1− δ, the error in the estimate qµ

Γ̂γ
is bounded by:

E = ‖qµ
Γ̂γ
− qµγenv‖ ≤

rmax

1− γenv
×

(
Γmax(γdmin − γdmax)

(1− Γmaxγdmin)2

√
1

2n log 2|S||O|
δ︸ ︷︷ ︸

variance

+ (γ − γenv)(γdmin + 1) + γ(1− Γmax)
(1− γenv)(1− Γmaxγdmin)︸ ︷︷ ︸

bias

)
.

3e.g. if γ = 1, Γo must be P oγenv exactly.
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Note that while this result is for the setting of policy evaluation, it is representative of
the control setting, as evidenced by our experimental results.

5.6 Experiments
We investigate the two key ideas of this chapter empirically, namely we first demonstrate
the bias-variance tradeoff obtained in Theorem 5.2, and we then illustrate the ability of time
dilation to extend the agent’s horizon and preserve far-sighted policies, irrespectively of
the size of the environment. Our approximate planning setting is similar to that described
in [Jiang et al. 2015b]. Similarly to that work, and since the reward model is unaffected
by our proposed framework, we do not estimate the reward model in our experiments,
but use its true value.

5.6.1 Bias-Variance
We investigate whether the analytical bias-variance tradeoff can be observed in practice in
the control setting on the classical Four Rooms domain [Sutton et al. 1999], see Fig. 5.4,
left. Here, the agent aims to navigate to a goal location via options that navigate from
inside of each room to its hallways. To evaluate the effects of varied option duration,
we add ε-noise to the typically deterministic option policies. That is: an option takes an
action recommend by its original πo w.p. 1 − ε, and a random action w.p. ε. To obtain
a clear picture, we consider a very noisy case of ε = 0.5.
For each option o, and for each state s ∈ Io, we sample n trajectories to obtain an

estimate P̂ oΓγ of P oΓγ . We then perform policy iteration w.r.t. the approximate models
P̂ oΓγ and the true reward models Roγenv to obtain the approximate optimal policy π∗

Γ̂γ
. We

then report the certainty equivalence (CE) loss4 − 1
|S|
∑
s∈S v

∗
Γ̂γ

(s) for the value of this
π∗

Γ̂γ
. See Fig. 5.5 for the results and considered parameter ranges.

Notice how the loss curves mimic the bound on the variance term from Lemma 5.1 closely
for reasonably high γ, while the bias term dominates the performance of the low γ-s.

5.6.2 Horizon Invariance
Recall the scenario described in Sec. 5.3.1. We simulate an experiment that mimics this
scenario and observe that the claims hold in practice numerically. In particular, we consider

4 CE control is the term used in stochastic control theory for the setting of acting according to a policy
obtained via planning with an inaccurate model (e.g. [Jiang et al. 2015b]).
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g

S

G

Figure 5.4: The domains used in our experiments. Left Four Rooms. The agent starts in
the top left room, and aims to navigate to G1 via options that navigate to hallways. The
option policies are ε-soft and extremely noisy with ε = 0.5. Right Growing Gridworld.
The agent’s task is to get from the start state S to the goal G. There is another

distractor goal g with a smaller reward.

a simple Growing Gridworld task (Fig. 5.4, right). There are two terminal states: g with
a smaller reward (of 1) and G with a larger reward (of 2). The preference of the agent
between them is entirely determined by its discount factor γ. As in the previous experiment
we estimate P̂ oΓγ from n samples, and obtain π∗

Γ̂γ
by policy iteration. We take the value

of n to be 2 here. For the estimation to be less trivial, we consider ε-soft option policies,
as described above, with ε = 0.05. We then consider both the value of the optimal policy
π∗

Γ̂γ
w.r.t. approximate model, and the value of the optimal policy π∗Γγ w.r.t. the true

model P oΓγ , both evaluated with a very high γeval = 1 − 10−8 to capture our desired
evaluation metric. We denote these values by vπ̂∗γeval and v

π∗

γeval
, respectively.

We compare two variants: one with γ < 1,Γ = 1 (corresponding to the classical option
model), and the other with γ = 1,Γ < 1 (exploiting time dilation). The reward model
is computed with the same value of γenv < 1 for both cases. Figure 5.6 reports the
certainty equivalence gain 1

|S|
∑
s v(s) for both the exact and approximate optimal values

of these variants.
We see that the same pattern is induced in both the exact and approximate case, and

the values of the optimal policies diminish, as the size of the grid gets larger. As should
be expected, the effect is more pronounced in the approximate case. Time dilation on
the other hand allows the options to maintain the same performance regardless of the
size of the grid.
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Figure 5.5: The certainty equivalence loss − 1
|S|
∑
s v
∗
Γ̂γ

(s) as a function of γ and for
different values of Γ (lower is better). The reward model is known, the transition model

is estimated from N samples, and v∗
Γ̂γ

is obtained from solving it. Average of 100
independent runs. Notice the similarity with Fig. 5.3, which diminishes as N increases,
since the effects of the variance then diminish. The large error in the small γ-s on the
other hand is due to a large bias. Note the log scale, where we have biased the value at

1.0 to be finite.
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Figure 5.6: The certainty equivalence gain 1
|S|
∑
s v(s) as a function of the grid size

(higher is better). The value function v is the value w.r.t. a high γeval of the optimal
policies w.r.t. Left the exact model P oΓγ Right the approximate model P̂ oΓγ . The shaded

area denotes standard deviation. We compare two variants: one with γ < 1,Γ = 1
(corresponding to the classical option model), and the other with γ = 1,Γ < 1
(exploiting time dilation). The reward model is computed with the same value of

γenv < 1 for both cases. We see that in both cases the performance of the variant γ < 1
deteriorates with the size of the grid, while the variant with γ = 1,Γ < 1 is indifferent to
the size of the grid. Note that this pattern is irrespective of the chosen value of γ and

would occur for some grid size for any γ.

5.7 Related Work

The analysis in our work is closely related to that in [Jiang et al. 2015b], and the earlier
results along the same lines of [Petrik and Scherrer 2009]. In both works, the authors
consider the tradeoff on the estimation variance and the target bias in the quality of the
approximate planning solution incurred by using a lower discount factor. [Jiang et al.
2015b] show that it is beneficial to use a lower discount, when the number of samples of
the transition model is small. These implications carry over to Γo in the context of options,
while γ controls a more subtle tradeoff that has to do with random option duration. [Petrik
and Scherrer 2009] focus on the bias aspect, and show that in some problems the bias due
to using a lower discount can be better than predicted by the worst case. In particular,
the authors show that is true for problems whose rewards are sparse. It is interesting to
identify a similar structure for the case of options.
General transition-based discounting is introduced in [White 2017]. There, the author

proposes to use the discount as a formalism for reinforcement learning tasks, and argue
that each option then represents a task, since the termination condition of each option
together with the step discount incurs a transition discount. We propose to alter the
option discounting explicitly, and as a result incur option-transition discounts.
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5.8 Discussion
Control case. While the experiments we have conducted are in the control setting, and
support the implications of the analysis, the analysis applies to a fixed policy µ. Most of
the results can be extended to the control case with an extra relatively standard step, but
in order to extend Lemma 5.1 to apply to all policies, we need to consider the relationship
of the number of optimal policies under a given model |MΓγ | to Γ and γ. [Jiang et al.
2015b] give an interesting interpretation of γ as a policy complexity control parameter,
and show that the number of optimal policies grows monotonically with γ. This is less
straightforward in the case of options due to there being two parameters Γ and γ, instead
of one. We plan to investigate this further in the future.

Reward model. We have assumed throughout that the reward model R is unaffected
by the new discounting and is w.r.t. γenv. Such an assumption is natural – the option
may not have control over the way that the environment provides it with rewards, and it is
convenient to maintain the reward models on the same scale. For complete generality, it
is possible to consider an option-specific γor , which would introduce another bias-variance
tradeoff, this time in the option return. This could be useful when the reward model is
estimated from noisy samples, and a lower γor is sufficient to capture it.

Limitations. We expect there to be interaction between the effects of time dilation and
the sign of the rewards, hence a renormalization to a positive reward range may be required
for predictable behavior. The method introducess more parameters, when compared to the
naive scalar γ case, and just like with γ, the effect of the parameters on performance can
be very strong. Finding a way to adjust them from data (in the style of the termination
condition of option-critic algorithhms [Bacon et al. 2017] is an interesting future direction.

Future work. We plan to evaluate the benefits of horizon invariance with option transfer
from Section 5.3.1 in a larger problem. If there is generalization in the state representation,
it may be possible to successively transfer option policies learnt on smaller instances of
a task to larger instances of the same task, as a form of scaffolding. Furthermore, it is
interesting to use time dilation as an alternative to deliberation cost [Harb et al. 2018]
for incentivizing longer option duration.
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5.9 Summary
We propose a generalization to the options framework that provides an option with auton-
omy over its timescale, by introducing time dilation into the option transition model. We
have analyzed the bias-variance tradeoff incurred by doing so, and verified the analytical
shapes empirically. We have shown that the proposed framework allows one to continue
to represent policies over options for which the step discount is inadequate.
Representing long horizons is unquestionably key to learning complex problems. Unfor-

tunately, the incurred computational complexity of doing so via the usual step discount
is often prohibitive. The time dilation mechanism we propose in this work may sidestep
this issue by tying discounting in with the options framework, and allowing options to be
truly temporally abstract.
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“The answer to the Great Question... of Life, the Universe and Everything...
is... Forty-two,” said Deep Thought, with infinite majesty and calm.

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy.

6 | Potential-Based Shaping
with Arbitrary Rewards

In this final chapter, we turn to another approach to enriching the basic learning step.
Namely, we consider a case, where the environment reward may be very sparse, but other
sources of auxiliary information are available. This is common in realistic settings, since
learning is rarely insular, and there is a multitude of additional signals one could attempt
to leverage. The key challenge in doing so is ensuring that it is not harmful. This is
a tough requirement to meet, because it requires a careful inspection of the additional
feedback.1 The framework of potential-based reward shaping (PBRS) guarantees that its
application preserves optimality, and is hence ideal for incorporating auxiliary information,
whose quality cannot be assured.
The drawback of PBRS is that it requires rendering the additional information in a

specific form, which may be restrictive. In this chapter we will describe an algorithm to
use PBRS to encode information of general form and obtain the required specific form
through learning. We will then validate our approach on a case study of online feedback
in the game of Mario, which is a scenario that was difficult to handle soundly in the past.

1See e.g. a recent blog post by OpenAI [OpenAI 2016] for a modern take on this issue.
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6.1 Introduction

The term shaping in experimental psychology (dating at least as far back as [Skinner
1938]) refers to the idea of rewarding all behavior leading to the desired behavior, instead
of waiting for the subject to exhibit it autonomously (which, for complex tasks, may take
prohibitively long). For example, Skinner discovered that, in order to train a rat to push a
lever, any movement in the direction of the lever had to be rewarded. The typical tabula
rasa RL paradigm guarantees the agent to learn the desired behavior eventually. However,
as with Skinner’s rat, the RL agent may take a very long time to stumble upon the target
lever, if the only reinforcement (or reward) it receives is after that fact. Shaping can hence
be used to speed up the learning process by providing additional rewards. Shaping in RL
has been linked to reward functions from very early on; [Mataric 1994] interpreted shaping
as designing a more complex reward function, [Dorigo and Colombetti 1997] used shaping
on a real robot to translate expert instructions into reward for the agent, as it executed a
task, and [Randløv and Alstrøm 1998] proposed learning a hierarchy of RL signals in an
attempt to separate the extra reinforcement function from the base task. It is in the same
paper that they uncover the issue of modifying the reward signals in an unconstrained
way: when teaching an agent to ride a bicycle, and encouraging progress towards the
goal, the agent would get “distracted”, and instead learn to ride in a loop and collect
the positive reward forever. This issue of positive reward cycles is addressed by [Ng et al.
1999], where they devise their potential-based reward shaping (PBRS) framework, which
constrains the shaping reward to have the form of a difference of a potential function of the
transitioning states. In fact, they prove a stronger claim that such a form is necessary2 for
leaving the original task unchanged. This elegant and implementable framework led to an
explosion of reward shaping research and proved to be extremely effective [Asmuth et al.
2008], [Devlin et al. 2011], [Brys et al. 2014], [Snel and Whiteson 2014]. [Wiewiora et al.
2003] extended PBRS to state-action advice potentials, and [Devlin and Kudenko 2012]
recently generalized PBRS to handle dynamic potentials, allowing potential functions to
change online whilst the agent is learning.

6.1.1 Potential-Based Reward Shaping
The most general form of reward shaping in RL can be described as modifying the reward
function of the underlying MDP:

r′ = r + f,

2Given no knowledge of the MDP dynamics.
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where f is the shaping reward function f : S×A→ R, with f(s, a, s′) giving the additional
reward on the transition (s, a, s′), and where here and throughout this chapter we assume
r to be defined on transitions. Potential-based reward shaping [Ng et al. 1999] maintains
a potential function h : S → R, and constrains the shaping reward function f to the
following form:

f(s, a, s′) = γh(s′)− h(s), ∀a ∈ A, (6.1)

where γ is the discounting factor of the MDP. [Ng et al. 1999] show that this form is
both necessary and sufficient for policy invariance. [Wiewiora et al. 2003] extend PBRS
to advice potential functions defined over the state-action space. The authors consider
two types of advice: look-ahead and look-back, providing the theoretical framework for
the former. For any snippet s, a, s′, a′:

f(s, a, s′, a′) = γh(s′, a′)− h(s, a). (6.2)

Finally, [Devlin and Kudenko 2012] generalize the form in Eq. (6.1) to dynamic potentials,
by including a time parameter, and show that all theoretical properties of PBRS hold.
For any snippet of experience s, t, s′, t′, where t and t′ are the times of occurrence of s
and s′ we have:

f(s, t, s′, t′) = γh(s′, t′)− h(s, t).

6.2 Expressing Arbitrary Reward Functions as Potential-
Based Advice

Additive reward functions from early reward shaping research, while dangerous to policy
preservation, were able to convey behavioral knowledge (e.g. expert instructions) directly.
Potential functions require an additional abstraction, and restrict the form of the additional
effective reward, but provide crucial theoretical guarantees. We seek to bridge this gap
between the available behavioral knowledge and the potential-based shaping rewards.
In this work, we provide a novel way to specify the shaping rewards, directly through

an arbitrary reward function, while implicitly maintaining the grounding in potentials,
necessary for policy invariance. For this, we first extend Wiewiora’s advice framework
to dynamic advice potentials. We then propose to in parallel learn a secondary value
function w.r.t. a variant of our arbitrary reward function, and use its successive estimates
as our dynamic advice potentials. We show that the effective shaping rewards then reflect
the input reward function in expectation. Empirically, we first demonstrate our method
to avoid the issue of positive reward cycles on a grid-world task, when given the same
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behavior knowledge that trapped the bicyclist from [Randløv and Alstrøm 1998]. We then
show an application, where our dynamic (PB) value-function advice outperforms other
reward-shaping methods that encode the same knowledge, as well as a shaping w.r.t. a
different popular heuristic.

6.2.1 From Reward Functions to Dynamic Potentials
There are two (inter-related) problems in PBRS: efficacy and specification. The former
has to do with designing the best potential functions, i.e. those that offer the quickest
and smoothest guidance. The latter refers to capturing the available domain knowledge
into a potential form, in the easiest and most effective way. This work primarily deals
with that latter question.
Locking knowledge in the form of potentials is a convenient theoretical paradigm, but

may be restrictive, when considering all types of domain knowledge, in particular behavioral
knowledge, which is likely to be specified in terms of actions. Say, for example, an expert
wishes to encourage an action a in a state s. If following the advice framework, she sets
h(s, a) = 1, with h zero-valued elsewhere, the shaping reward associated with the transition
(s, a, s′) and some function a′ will be f(s, a, s′, a′) = h(s′, a′) − h(s, a) = 0 − 1 = −1,
so long as the pair (s′, a′) is different from (s, a).3 The favorable behavior (s, a) will then
factually be discouraged. She could avoid this by further specifying h for state-actions
reachable from s via a, but that would require knowledge of the MDP. What she would
thus like to do is to be able to specify the desired effective shaping reward f directly, but
without sacrificing optimality provided by the potential-based framework.
This work formulates a framework to do just that. Given an arbitrary reward function r∗,

we wish to achieve f ≈ r∗, while maintaining policy invariance. This question is equivalent
to seeking a potential function h, based on r∗, s.t. fh ≈ r∗, where (and in the future)
we take fh to mean a potential-based shaping reward w.r.t. h.
The core idea of our approach is to learn h in parallel as a secondary (state-action) value

function on the negation of the expert-provided r∗, and use the consecutively updated
values of ht as a dynamic potential function, thus making the translation into potentials
implicit. Specifically, for an experience s, a, St+1, At+1:

ht+1(s, a) = ht(s, a) + βtδ
h
t ,

δht = Rht+1 + γht(St+1, At+1)− ht(s, a), (6.3)
Rht+1 = −r∗(s, a), (6.4)

3Assume the example is undiscounted for clarity.
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where βt is the learning rate at time t, and the action At+1 is chosen on-policy w.r.t.
some policy π. The shaping reward is then of the form:

Ft+1 = γht+1(St+1, At+1)− ht(St, At). (6.5)

The intuition of the correspondence between r∗ and f lies in the relation between the
Bellman equation (for h):

hπ(s, a) = −r∗(s, a) + γEπ [hπ(s′, a′)]

and shaping rewards from an advice potential function:

f(s, a) = γh(s′, a′)− h(s, a) = r∗(s, a).

This intuition will be made more precise later.

6.2.2 Analysis
This section is organized at follows. First, we extend the potential-based advice frame-
work to dynamic potential-based advice, and ensure that the desired guarantees hold. (Our
dynamic (potential-based) value-function advice is then an instance of dynamic potential-
based advice.) We then turn to the question of correspondence between r∗ and f , showing
that f captures r∗ in expectation. Finally, we ensure that these expectations are mean-
ingful, by arguing convergence.

Dynamic Potential-Based Advice

Analogously to [Devlin and Kudenko 2012], we augment Wiewiora’s look-ahead advice
function (Eq. (6.2)) with a time parameter to obtain our dynamic potential-based advice:

f(s, a, t, s′, a′, t′) def= γh(s′, a′, t′)− h(s, a, t) = ht′(s′, a′)− ht(s, a) (6.6)

where t/t′ is the time of the agent visiting state s/s′ and taking action a/a′. The following
theorem shows the relationship of the values of a policy in the original and shaped MDPs.
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Theorem 6.1

Let qπ be the value of a policy π in M = (r, S,A, p, γ) , and qπh that in M ′ =
(r + f, S,A, p, γ), with f defined as in Eq. (6.6). We have that:

qπh = qπ − h0.

Thus, once the optimal policy w.r.t. r + f is learnt, to uncover the optimal policy w.r.t.
r, one may use the biased greedy action-selection [Wiewiora et al. 2003] w.r.t. the initial
values of the dynamic advice function.

π(s) = arg max
a

(q(s, a) + h0(s, a)) .

Notice that when the advice function is initialized to 0, the biased greedy action-selection
above reduces to the basic greedy policy, allowing one to use dynamic advice equally
seamlessly to simple state potentials.

Shaping in Expectation

The previous section proved the soundness of the general framework of dynamic advice.
We will now show that the specific algorithm we propose indeed captures the auxiliary
r∗ in expectation.
Let h be the state-action value function that learns on rh = −r∗, while following some

fixed policy π. The shaping reward at timestep t w.r.t. h as a dynamic advice function
is given by:

Ft+1
def= f(St, At, t, St+1, At+1, t+ 1)
= γht+1(St+1, At+1)− ht(St, At)
= γht(St+1, At+1)− ht(St, At) + γht+1(St+1, At+1)− γht(St+1, At+1)
(6.3)= δht −Rht+1 + γ∆h(St+1, At+1)
= r∗(St, At) + δht + γ∆h(St+1, At+1). (6.7)

where we denote the change in the estimate h from time t to time t + 1 by ∆h. Now
assume the process has converged to the TD fixed point hπ. ht+1 = ht = hπ. For any
t and t′ we have:

f(s, a, t, s′, a′, t′) = γhπ(s′, a′)− hπ(s, a)
= −rh(s, a) + rh(s, a) + γEπ [hπ(s′, a′)]− hπ(s, a)
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+ γhπ(s′, a′)− γEπ [hπ(s′, a′)]
= r∗(s, a) + γ (hπ(s′, a′)− Eπ [hπ(s′, a′)]) . (6.8)

Thus, we obtain that the shaping reward f w.r.t. the converged values hπ, reflects the
expected auxiliary reward r∗(s, a) plus a term that measures how different the sampled
next state-action value is from the expected next state-action value. This term will at each
transition further encourage transitions that are “better than expected” (and vice versa),
similarly, e.g., to "better-than-average" (and vice versa) rewards in R-learning [Schwartz
1993].
Now let f∗ be the expected shaping reward on a state-action pair (s, a), Taking the ex-

pectation w.r.t. the transition matrix p, and the policy π with which a′ is chosen, we have:

f∗(s, a) = Eπ [f(s, a, s′, a′)]
= r∗(s, a) + γEπ [hπ(s′, a′)− Eπ [hπ(s′, a′)]] = r∗(s, a). (6.9)

Thus, Eq. (6.7) gives the shaping reward while h’s are not yet converged, (6.8) gives
the component of the shaping reward on a transition after hπ are correct, and (6.9)
establishes the equivalence of f∗ and r∗ in expectation.

Convergence of h

If the policy π is fixed, and the qπ estimates are correct, the expectations in the previous
section are well-defined, and h converges to the corresponding TD fixed point. However,
h is learnt at the same time as q. This process can be shown to converge by formulating
the framework on two timescales [Borkar 1997], and using the ODE method of [Borkar
and Meyn 2000]. We thus require4 the step size schedules (αk)k∈N and (βk)k∈N satisfy
the following:

lim
k→∞

αk
βk

= 0 (6.10)

q and h correspond to the slower and faster timescales, respectively. Given that step-size
schedule difference, we can rewrite the iterations (for q and h) as one iteration, with
a combined parameter vector, and show that the assumptions (A1)-(A2) from [Borkar
and Meyn 2000] are satisfied, which allows to apply their Theorem 2.2. This analysis is
analogous to that of convergence of TD with Gradient Correction (Theorem 2 in [Sutton
et al. 2009]), and is left out for clarity of exposition.

4In addition to the standard stochastic approximation assumptions, that is Assumption 2.2 for both
αk and βk, and Assumptions 2.3, 3.1.

113



CHAPTER 6. POTENTIAL-BASED SHAPING WITH ARBITRARY REWARDS

Note that this convergence is needed to assure that h indeed captures the expert reward
function r∗. The form of general dynamic advice from Theorem 6.1 itself does not pose
any requirements on the convergence properties of h to guarantee policy invariance.

6.2.3 Experiments
We first demonstrate our method correctly solving a grid-world task, as a simplified instance
of the bicycle problem. We then assess the practical utility of our framework on a larger
cart-pole benchmark, and show that our dynamic (PB) VF advice approach outperforms
other methods that use the same domain knowledge, as well as a popular static shaping
w.r.t. a different heuristic.

Grid-World

We formulate a minimal working example of the bicycle problem [Randløv and Alstrøm
1998], illustrating the issue of positive reward cycles. Given a 20 × 20 grid, the goal is
located at the bottom right corner. The agent must reach it from its initial position at
the top left corner, upon which event it will receive a positive reward. The reward on the
rest of the transitions is 0. The actions correspond to the 4 cardinal directions, and the
state is the agent’s position coordinates (x, y) in the grid. The episode terminates when
the goal was found, or when 10000 steps have elapsed.
Given approximate knowledge of the problem, a natural heuristic to encourage is transi-

tions that move the agent to the right, or down, as they are to advance the agent closer
to the goal. A reward function r∗ encoding this heuristic can be defined as

r∗(s, right) = r∗(s, down) = c, c ∈ R+, ∀s ∈ S.

When provided naïvely (i.e. with f = r∗), the agent is at a risk of getting “distracted”:
getting stuck in a positive reward cycle, and never reaching the goal. We apply our frame-
work, and learn the corresponding h w.r.t. rh = −r∗,setting f accordingly (Eq. (6.5)). We
compare that setting with the base learner and with the non-potential-based naïve learner.5
Learning was done via Sarsa with ε-greedy action selection, ε = 0.1. The learning

parameters were tuned to the following values: γ = 0.99, c = 1, αt+1 = ταt decaying
exponentiallywith α0 = 0.05, τ = 0.999 and βt = 0.1.

5 To illustrate our point more clearly, we omit the static PB variant with (state-only) potentials
h(x, y) = x + y. It depends on a different type of knowledge (about the state), while this experiment
compares two ways to utilize the behavioral reward function r∗. The static variant does not require
learning, and hence performs better in the beginning.
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Figure 6.1: Mean learning curves. Shaded areas correspond to the 95% confidence
intervals. The plot is smoothed by taking a running average of 10 episodes. (a) The
same reward function added directly to the base reward function (non-PB advice)
diverges from the optimal policy, whereas our automatic translation to dynamic-PB
advice accelerates learning significantly. (b) Our dynamic (PB) VF advice learns to

balance the pole the soonest, and has the lowest variance.

We performed 50 independent runs, 100 episodes each (Fig. 6.1). Observe that the
performance of the (non-PB) agent learning with f = r∗ actually got worse with time, as
it discovered a positive reward cycle, and got more and more disinterested in finding the
goal. Our agent, armed with the same knowledge, used it properly (in a true potential-
based manner) and the learning was accelerated significantly, compared to the base agent.

Cart-Pole

We now evaluate our approach on a more difficult cart-pole benchmark [Michie and Cham-
bers 1968]. The task is to balance a pole on top a moving cart for as long as possible.
The (continuous) state contains the angle ξ and angular velocity ξ̇ of the pole, and the
position x and velocity ẋ of the cart. There are two actions: a small positive and a small
negative force applied to the cart. A pole falls if |ξ| > π

4 , which terminates the episode.
The track is bounded within [−4, 4], but the sides are “soft”; the cart does not crash upon
hitting them.6 The reward function penalizes a pole drop, and is 0 elsewhere. An episode
terminates successfully, if the pole was balanced for 10000 steps.
An intuitive behavior to encourage is moving the cart to the right (or left) when the

pole is leaning rightward (or leftward). Let i : S × A → {0, 1} be the indicator function
6This is to focus our attention to the balancing problem.
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Best γ values Base γ = 0.8
Variant Final Overall Final Overall
Base 5114.7±188.7 3121.8±173.6 5114.7±165.4 3121.8±481.3
Non-PB advice 9511.0±37.2 6820.6±265.3 6357.1±89.1 3405.2±245.2
Myopic PB shaping 8618.4±107.3 3962.5±287.2 80.1±0.3 65.8±0.9
Static PB 9860.0±56.1 8292.3±261.6 3744.6±136.2 2117.5±102.0
Dynamic (PB) VF advice 9982.4±18.4 9180.5±209.8 8662.2±60.9 5228.0±274.0

Table 6.1: Cart-pole results. Performance is indicated with standard error. The final
performance refers to the last 10% of the run. Dynamic (PB) VF advice has the highest
mean, and lowest variance both in tuned and fixed γ scenarios, and is the most robust,

whereas myopic shaping proved to be especially sensitive to the choice of γ.

denoting such orientation of state s and action a. A reward function to encompass the
rule can then be defined as:

r∗(s, a) = i(s, a)× c, c ∈ R+.

We compare the performance of our agent to the base learner and two other reward
shaping schemes that reflect the same knowledge about the desired behavior, and one
that uses different knowledge (about the angle of the pole).7 The variants are described
more specifically below:

Base The base learner, f1 = 0.

Non-PB advice Advice is received simply by adding r∗ to the main reward function,
f2 = r∗. This method will lose some optimal policies.

Myopic PB advice Potentials are initialized and maintained with r∗, i.e. f3 = fh with
h = r∗. This is closest to Wiewiora’s look-ahead advice framework.

Static PB shaping with angle The agent is penalized proportionally to the angle with
which it deviates from equilibrium. f4 = fh with h ∼ −|ξ|2.

Dynamic (PB) VF advice We learn h as a value function w.r.t. rh = −r∗, and set
f5 = fh accordingly (Eq. (6.5)).

We used tile coding [Sutton and Barto 2017] with 10 tilings of 10 × 10 to represent
the continuous state. Learning was done via Sarsa(λ) with eligibility traces and ε-greedy

7 Note that unlike our behavioral encouragement, the angle shaping requires precise information about
the state, which is more demanding in a realistic setup, where the advice comes from an external observer.
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action selection, ε = 0.1. The learning parameters were tuned to the following: λ = 0.9,
c = 0.1, αt+1 = ταt decaying exponentially with α0 = 0.05, τ = 0.999, and βt = 0.2.
We found γ to affect the results differently across variants, with the following best values:
γ1 = 0.8, γ2 = γ3 = γ4 = 0.99, γ5 = 0.4. Mi is then the MDP (S,A, γi, p, r + fi).
Fig. 6.1 gives the comparison across Mi (i.e. the best γ values for each variant), whereas
Table 6.1 also contains the comparison w.r.t. the base value γ = γ1.
We performed 50 independent runs of 100 episodes each (Table 6.1). Our method

outperforms the alternatives in both fixed and tuned γ scenarios, converging to the optimal
policy reliably after 30 episodes in the latter (Fig. 6.1). Paired t-tests on the sums of steps
of all episodes per run for each pair of variants confirm all variants as significantly different
with p < 0.05. Notice that the non-potential-based variant for this problem does not
perform as poorly as on the grid-world task. The reason for this is that getting stuck in
a positive reward cycle can be good in cart-pole, as the goal is to continue the episode
for as long as possible. However, consider the policy that achieves keeping the pole at an
equilibrium (at ξ = 0). While clearly optimal in the original task, this policy will not be
optimal in M2, as it will yield 0 additional rewards.

6.2.4 Discussion
Choice of r∗. The given framework is general enough to capture any form of the reward
function r∗. Recall, however, that f∗ = r∗ holds after h values have converged. Thus, the
simpler the provided reward function r∗, the sooner will the effective shaping reward capture
it. In this work, we have considered reward functions r∗ of the form r∗(B) = c, c > 0,
where B is the set of encouraged behavior transitions. This follows the convention of
shaping in psychology, where punishment is implicit as absence of positive encouragement.
Due to the expectation terms in f , we expect such form (of all-positive, or all-negative r∗)
to be more robust. Another assumption is that all encouraged behaviors are encouraged
equally; one may easily extend this to varying preferences c1 < . . . < ck, and consider
a choice between expressing them within a single reward function, or learning a separate
value function for each signal ci.

Role of discounting. Discounting factors γ in RL determine how heavily the future
rewards are discounted, i.e. the reward horizon. Smaller γ’s (i.e. heavier discounting)
yield quicker convergence, but may be insufficient to convey long-term goals. In our
framework, the value of γ plays two separate roles in the learning process, as it is shared
between h and q. Firstly, it determines how quickly h values converge. Since we are
only interested in the difference of consecutive h-values, smaller γ’s provide a more stable
estimate, without losses. On the other hand, if the value is too small, q will lose sight of the
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long-term rewards, which is detrimental to performance, if the rewards are for the base task
alone. We, however, are considering the shaped rewards. Since shaped rewards provide
informative immediate feedback, it becomes less important to look far ahead into the
future. This notion is formalized by [Ng 2003], who proves (in Theorem 3) that a “good”
potential function shortens the reward horizon of the original problem. Thus γ, in a sense,
balances the stability of learning h with the length of the shaped reward horizon of q.

Limitations. As with all shaping methods, one must be careful about the magnitude
of the reward for the base problem, and that of the shaping reward [Harutyunyan et al.
2015a]. In the case of our algorithm this concerns both the magnitude of the reward
provided to the secondary value function, and the relative step-size schedule.

In the remainder of this chapter we will apply the framework we formulated in the first
part to the challenging scenario of online advice.

6.3 Case Study: Advising Mario with Dynamic PBRS
Advice is an integral part of learning, both for humans and machines. While priceless in
some situations, it is heuristic in nature, and may be extremely suboptimal. In RL, where
learning implies optimizing a given reward function that specifies the task, care must be
taken so as to maintain focus on solving that task, and use advice only as guidance.
The alternative is to learn to optimize the advice itself, which may solve the problem if
the advice comes from a perfect oracle, but is likelier to result in suboptimal behaviors,
and even prevent solving the problem altogether [Randløv and Alstrøm 1998]. We wish
to ensure that regardless of the quality of advice, the agent does not suffer negative
consequences for heeding it.
For this, we place ourselves into the PBRS framework [Ng et al. 1999], which gives

the necessary form of modifying the reward function of an MDP without altering its
(near-)optimal policies. We now make explicit the implicit assumption above of advice
being expressed as a reward function rA. While there is evidence that reward shaping
offers more advantages than pure exploration guidance [Harutyunyan et al. 2014, Laud
and DeJong 2003], previous attempts of integrating human feedback into the reward
scheme have not shown much promise [Knox and Stone 2012, Griffith et al. 2013]. This is
unsurprising, as these attempts are either not potential-based, or do not capture the advice
properly, since previously there has been no clear way to translate the advice function rA
into h.The framework we described in the beginning of this chapter allows one to express
any arbitrary reward function in the potential-based form of Eq. (6.1). An important
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implication is that we may then leverage rA that is being provided sporadically online (e.g.
by a human), while maintaining all guarantees of PBRS.

6.3.1 Setting and Method
We assume a reward-centric feedback strategy [Loftin et al. 2014], i.e. all feedback is
positive, and punishment is implicit in the absence of feedback. The advice function is
then an indicator i defined over the state-action space. We render i as a numerical reward
function rA in a natural way:

rA(s, a) = c× i(s, a)

where c is a scaling constant. Then, following our framework, we learn hA to express rA,
with the following update rules at each step:

hAt+1(St, At)← hAt (St, At) + βt(−RAt+1 + γhAt (St+1, At+1)− hAt (St, At))
fAt+1 ← γhAt+1(St+1, At+1)− hAt (St, At)

q(St, At)← q(St, At) + αt
(
Rt+1 + fAt+1 + γq(St+1, At+1)− q(St, At)

)
Note that we do not attempt to solve the advice delay problem. In our framework,

the advice is implicitly propagated down the trajectory via the eligibility trace, with the
remaining effect of delay being treated as noise.

6.3.2 Mario Domain
The Mario benchmark problem [Karakovskiy and Togelius 2012] is based on Infinite Mario
Bros, a public reimplementation of Super Mario Brosr. There are 12 discrete actions,
corresponding to the buttons (with valid combinations) on a NES controller. Environment
rewards correspond to the points collected in the game: the agent is rewarded for killing
an enemy, collecting a coin, etc, and punished for getting hurt by a creature or dying. The
state space includes information about Mario’s state (can jump, can shoot, etc), as well
as the coordinates of the closest enemy within a given range. The states are represented
tabularly, following the architecture of [Brys et al. 2015]. The state-action values are
initialized to 0, resulting in near-random starting behavior.

6.3.3 Experiments
The participants were asked to advise Mario for the first 5 episodes by watching the agent
play (at full speed of 25 decisions per second), and pressing a key, whenever in their opinion
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Figure 6.2: A screenshot from Mario executing the level used in the demonstration

it had performed a good action.8 Recall that feedback is exclusively positive. After the
advice had stopped, Mario continued learning on its own for another 95 episodes. We
have considered two classes of advice:

Expert advice The advice is provided by a domain expert with detailed knowledge of the
state space

Non-expert advice Advisors are unaware of the state space (and, occasionally, of Mario)

Tab. 6.2 gives the comparison between the performance of Mario learning without any
advice, with expert advice and with non-expert advice. Each variant is an average of 21
independent runs. The average advising rate was recorded to be 0.015, amounting to ≈ 45
advising steps per trial. Note that there is no significant difference between expert and
non-expert advice, suggesting robustness to advice quality.
These results show that even with incredibly sparse advice rates, a large state space,

noise incurred by the complexities of the domain and the delay in advice, our method is
able to significantly improve the learning performance of Mario.

6.4 Related Work
The correspondence between value and potential functions has been known since the
conceivement of the latter. [Ng et al. 1999] point out that the optimal potential function
is the true value function itself (as in that case the problem reduces to learning the trivial
zero value function). With this insight, there have been attempts to simultaneously learn

8See https://vimeo.com/121085629 for an example video.
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6.5. SUMMARY

Variant Advice phase Cumulative
Baseline -376±51 470±83
Non-expert 401±54 677±60
Expert 402±62 774±47

Table 6.2: Points collected by Mario in the three considered scenarios (indicated with
standard error of the mean). The best (p < 0.05) performance is given in bold.

the base value function at coarser and finer granularities (of function approximation),
and use the (quicker-to-converge) former as a potential function for the latter [Grzes and
Kudenko 2008]. Our approach is different in that our value functions learn on different
rewards with the same state representation, and it tackles the question of specification
rather than efficacy.
On the other hand, there has been a lot of research in human-provided advice [Thomaz

and Breazeal 2006], [Knox et al. 2012]. This line of research (interactive shaping) typi-
cally uses the human advice component heuristically as a (sometimes annealed) additive
component in the reward function, which does not follow the potential-based framework,
and thus does not in general preserve policies. [Knox and Stone 2012] do consider PBRS
as one of their methods, but (a) stay strictly myopic (similarly to the third variant in
the cart-pole experiment), and (b) limit themselves to state potentials. Our approach is
different in that it incorporates the external advice through a value function, and stays
entirely sound in the PBRS framework.

6.5 Summary
In this chapter, we proposed a new reward shaping framework which allows to specify
the effective shaping reward directly. Given an arbitrary reward function, we learned a
secondary value function, w.r.t. a variant of that reward function, concurrently to the
main task, and used the consecutive estimates of that value function as dynamic advice
potentials. We showed that the shaping reward resulting from this process captures the
input reward function in expectation. We presented empirical evidence that the method
behaves in a true potential-based manner, and that such encoding of the behavioral do-
main knowledge speeds up learning significantly more, compared to its alternatives. The
framework induces little added complexity: the maintenance of the auxiliary value function
is linear in time and space [Modayil et al. 2012], and, when initialized to 0, the optimal
base value function is unaffected.
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With the inherent noise and lack of qualitative guarantees in human advice, it is impera-
tive to be cautious when integrating it in the RL process. As PBRS specifies the necessary
form of modifying an MDP without altering optimality, it seems a natural choice for mod-
eling human advice. We demonstrated the performance of a framework that is able to do
this for the first time, showing promise for reward shaping methods in this avenue.
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7 | Conclusions
In an effort to enrich the basic temporal difference step to enable learning with sophis-
tication, this dissertation touched upon three major research areas: learning off-policy
from multiple steps, learning with options, and learning with shaping rewards. There are
three motivating threads that can be traced through our work in these research areas:
efficiency, safety, and optimality.
Learning from multiple steps is more efficient. On the other hand, it is crucial for safety

to be able to learn about courses of actions, without explicitly trying them, to learn off-
policy. Further yet, if one is to learn off-policy from multiple steps, we wish for such learning
to utilize the steps as efficiently as possible, and for us to be sure that the learning will
optimally converge to the desired outcomes. Chapter 3 proposes algorithms to achieve this.
Learning with longer, temporally abstract options is more efficient for the same reasons,

as it is with multiple steps. But it is also safer, as with long sensible options there is
less potential for noise and jitter during learning. On the other hand, the shorter the
options, the more chances one has to pick among them optimally. Chapter 4 describes
an algorithm that removes this conflict between efficiency and safety on one hand, and
optimality on the other.
When optimality cannot be captured with primitive actions with a finite horizon, Chap-

ter 4 gives an option discounting scheme that allows for options to do so. This discounting
introduces a general tradeoff when using options: between bias and variance, optimality
and efficiency.

123



CHAPTER 7. CONCLUSIONS

One of the motivations of reward shaping is its use as a mechanism to guide exploration,
which is crucial for safety. Potential-based reward shaping ensures optimality is preserved.
Chapter 6 addresses the need to efficiently utilize arbitrary information in the required form.

7.1 Future Directions
The work in this dissertation has inspired many tangential ideas. Below we briefly outline
a few of the ones we find particularly fruitful.

7.1.1 Learning Longer Options
End-to-end option discovery often ends up converging to degenerate, one-step options [Ba-
con et al. 2017, Mann et al. 2014]. Longer options help in the beginning, but lose
significance at the end. This is unsatisfying, since one typically wishes to distill meaningful
behavior in the options, perhaps in order to transfer them to a different task.
One possible reason for this could be the continued anchoring to the primitive time step.

With it, each option is indeed no different from a sequence of primitive actions, and there
is no benefit in using options within the existing framework, as soon as the equivalent
sequence of primitive actions has been found. Adding a deliberation cost [Bacon and
Precup 2015, Harb et al. 2018], which incurs a penalty at decision points is one possibility
of addressing this. The ideas in Chapter 5 lend themselves to another. We can imagine
optimizing each option internally on its own timescale, while externally treating the options
irrespectively of their duration. This may make primitive actions less appealing to fall back
on, since each option will now be itself in some sense no different from a primitive action,
albeit more effective.
Another possible solution is to use the ideas from Chapter 4 and off-policy impose longer

durations on the options that are being learnt. This is similar to learning time-regularized
options from [Mann et al. 2014], but instead of the explicit regularization and option
interruption, here the desired effect would be imposed latently off-policy.

7.1.2 Distributing Time with Options
Consider the following example. An agent is starting to learn a task that takes a thousand
steps to solve. If the agent is to have hope to solve it, its discount factor γ must be able
to capture the thousand steps, that is it must be at least 0.999. Now, imagine that at the
end of learning, the agent has discovered that the task is composed of two options, each
taking five hundred steps. Each option must be able to represent its own horizon, which is
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Figure 7.1: Second-order discounting coefficients for γ1 = 0.95.

now shorter, but the outer task has reduced to the mere two steps! A plan over two steps
can be represented with a γ of as low as 0.5. Of course, one is free to continue using the
higher discount, but it is unnecessary, and, as is known, may yield slower learning.
Motivated by this example, one can imagine using the ideas in Chapter 5 to distribute

the time horizon of the agent, as its actions get more sophisticated, with the slowest
discounting found at the bottom of the hierarchy.

7.1.3 Second-Order Discounting
Consider two discounts γ1 and γ2, and consider the difference in values of a policy π
w.r.t. these discounts:

vπγ1,γ2
(s) = vπγ1

(s)− vπγ2
(s) = Eπ

[ ∞∑
t=0

(γt1 − γt2)Rt+1

]
.

Figure 7.1 plots the coefficients of this function for a fixed γ1 and different values of γ2.
The two discounting rates together incur a specific case of second-order exponential

decay: the rewards at nearby time steps weigh less that those temporally removed. Such a
setting may be useful in noisy problems where closer rewards whose discount coefficients
are larger drown out the more important long-horizon information. It is also appropriate
in real-world scenarios in which the environment incurs a physical time-delay in displaying
the consequences of an agent’s action. In fact, to handle such time delay a similar shape
has been considered for eligibility traces in a predictive neuroscience model [Kettner et al.
1997]. In RL, eligibility traces do not impact the solution, and to capture the value function
w.r.t. the delayed rewards, the mechanism must be realized through discounting.
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7.1.4 Shaping in Time
The classical meaning of the term shaping is to build up to solving a complex task via
a sequence of simpler related tasks. This idea, sometimes referred to as scaffolding can
be realized in PBRS via considering a sequence of potential functions that increase in
sophistication.
In line with the successive approximation work of [Chow and Tsitsiklis 1991], there have

been efforts to scaffold the potential function from fast-to-learn coarse features to slow-
but-accurate fine features [Grzes and Kudenko 2009]. It is possible to envision something
similar, but in time, rather than in space, that is: scaffolding potential functions from
more to less discounting.1 The more discounting (i.e. the smaller the γ), the easier it is
to learn a task, but the more short-sighted the resulting value function.
More precisely, given an MDP with some discount factor γenv, one can simultaneously

estimate value functions (vγi) w.r.t. γ1 < γ2 < . . . < γn, and use these value functions as
potentials in the increasing order of γ. The benefit of the indirect way of using potentials
is that due to the optimality guarantees of PBRS, the schedule of transitioning between
potential functions is less important.

7.1.5 Formal Recommendations of Potential Functions
There has been very little work on formal properties of what constitutes good potential
functions, apart from the seminal result of [Ng et al. 1999], in which they show that
the ideal potential function is the true value function itself. This is crucial, but hardly
helpful in practice.
The question is particularly interesting when considering dynamic PBRS, since there are

two dimensions at play there: (1) the distance of the potential function and the target
value function, and (2) the evolution of the estimates of the two quantities. In particular,
it is possible that the potential function evolves “in the same direction” of the target, and
reduces the worst case errors along the way, affecting the contraction coefficient itself.
More generally, it is interesting to devise general guidelines for potential functions that

guarantee a speed up in learning, under some assumptions on the MDP.

1Note that coarser features reduce the granularity of the agent’s horizon, but do not cause it to be
more myopic, as a smaller discount does.
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summarize the relationships here. Chapter 3 is based on [Harutyunyan et al. 2016] and the
subsequent [Munos et al. 2016]. Chapter 4 is in part based on [Harutyunyan et al. 2018]
and in part on previously unpublished results concerning the gated model. The content in
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of that work.
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A | Proofs from Chapter 3

A.1 Proofs of Lemma 3.1 and Lemma 3.2
Proof of Lemma 3.1. First notice that

‖(Pπ − Pµ)q‖ = max
s,a

∣∣∣∑
s′

p(s′|s, a)
∑
a′

((π(a′|s′)− µ(a′|s′)) q(s′, a′)
∣∣∣

≤ max
s,a

∑
s′

p(s′|s, a)
∑
a′

|π(a′|s′)− µ(a′|s′)|‖q‖ ≤ ε‖q‖. (A.1)

Let B = (I − λγPµ)−1 be the resolvent. From (3.7) we have

Rπλq − qπ = B (T πq − q + (I − λγPµ)(q − qπ))
= B (r + γPπq − qπ − λγPµ(q − qπ))
= B (γPπ(q − qπ)− λγPµ(q − qπ))
= γB

[
(1− λ)Pπ + λ(Pπ − Pµ)

]
(q − qπ).

Taking the sup-norm, since µ is ε-away from π as in Eq. (A.1):

‖Rπλq − qπ‖ ≤ η‖q − qπ‖

for η = γ
1−λγ (1− λ+ λε) < 1. Thus ‖qk − qπ‖ = O(ηk).

Proof of Lemma 3.2. Fix µ. Using (3.8), we write

R∗λq − q∗ = (I − λγPµ)−1 [T q − q + (I − λγPµ)(q − q∗)]
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= (I − λγPµ)−1 [T q − q∗ − λγPµ(q − q∗)] .

Taking the sup-norm, since ‖T q − q∗‖ ≤ γ‖q − q∗‖, we deduce the result:

‖R∗λq − q∗‖ ≤
γ + λγ

1− λγ ‖q − q
∗‖ .

A.2 Proof of Theorems 3.1 and 3.2

We will appeal to Proposition 5.2 from [Bertsekas and Tsitsiklis 1996] to prove the online
convergence of the algorithms. This will require rewriting the update in the suitable
form, and verifying Assumptions (a) through (d) from their Proposition 4.5. The sketch
below applies to both policy evaluation and control, for the values of λ prescribed by
Lemmas 3.1 and 3.2.

Proof (Sketch). Let zk,t(s, a) def=
∑t
i=0(γλ)t−iI{(Si, Ai) = (s, a)} denote the accumulat-

ing trace. It follows from Assumptions 2.3 and 3.1 that the total update at phase k is
bounded, which allows us to write the online version of (3.6) as

qok+1(s, a)← (1−Dkαk)qok(s, a) +Dkαk
(
Rπk,µkλ qok(s, a) + wk + uk

)
wk

def= (Dk)−1
[∑
t≥0

zk,tδ
πk
t − Eµk

[∑
t≥0

zk,tδ
πk
t

]]
,

uk
def= (Dkαk)−1(qok+1(s, a)− qk+1(s, a)

)
,

where Dk(s, a) def=
∑
t≥0 Pr{St, At = s, a}, and we drop the (s, a) argument for αk, Dk,

wk, uk, and zk,t. Combining Assumptions 2.3 and 3.1, we have 0 < D ≤ Dk(s, a) <∞,
which, combined in turn with Assumption 2.2, assures that the new stepsize sequence
α̃k(s, a) = (Dkαk)(s, a) satisfies Assumption (a) of Prop. 4.5. Assumptions (b) and (d)
require the variance of the noise term wk(s, a) to be bounded, and the residual uk(s, a)
to converge to zero, both of which can be shown identically to the corresponding results
from [Bertsekas and Tsitsiklis 1996], if Assumption 3.1 and Assumption (a) are satisfied.
Finally, Assumption (c) is satisfied by Lemmas 3.1 and 3.2 for the policy evaluation and
control cases, respectively. Therefore, the sequence (qok)k∈N converges to qπ or q∗ in the
respective settings, w.p. 1.
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A.3 Proof of Proposition 3.1
Proof. Writing the algorithm in operator form, we get

Rq = (1− λ)
∑
n≥0

λn
[ n∑
t=0

γt(Pµ)tr + γn+1(Pµ)nPπq
]

=
∞∑
t=0

(λγ)t(Pµ)t
[
r + (1− λ)γPπq

]
= (I − λγPµ)−1

[
r + (1− λ)γPπq

]
.

Thus, the fixed point qµ,π of R satisfies the following:

qµ,π = (I − λγPµ)−1 [r + (1− λ)γPπqµ,π] = (1− λ)T πqµ,π + λT µqµ,π.

Solving for qµ,π yields the result.

A.4 Proof of Theorem 3.3
The following lemma will be useful in proving Theorem 3.3.

Lemma A.1

The difference between Uq and its fixed point qπ is

Uq(s, a)−qπ(s, a) = Eµ
[ ∑
t≥1

γt
( t−1∏
i=1

ci

)([
Eπ[(q−qπ)(St, ·)]−ct(q−qπ)(St, At)

])]
.

Proof. The fact that qπ is the fixed point of the operator U is obvious from (3.17) since
ESt+1∼p(·|St,At)

[
Rt+1 + γEπqπ(St+1, ·) − qπ(St, At)

]
= (T πqπ − qπ)(St, At) = 0, since

qπ is the fixed point of T π. Now, let ∆q def= q − qπ. We begin by rewriting Eq. (3.17):

Uq(s, a) =
∑
t≥0

γtEµ

[( t∏
i=1

ci

)(
Rt+1 + γ

[
Eπq(St+1, ·)− ct+1q(St+1, At+1)

)]]
.

qπ(s, a) = Uqπ(s, a) =
∑
t≥0

γtEµ

[( t∏
i=1

ci

)(
Rt+1 + γ

[
Eπqπ(St+1, ·)− ct+1q

π(St+1, At+1)
)]]

,
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from which we deduce that

Uq(s, a)− qπ(s, a) =
∑
t≥0

γtEµ
[( t∏

i=1
ci

)(
γ
[
Eπ∆q(St+1, ·)− ct+1∆q(St+1, At+1)

])]

=
∑
t≥1

γtEµ
[( t−1∏

i=1
ci

)([
Eπ∆q(St, ·)− ct∆q(St, At)

])]
.

Proof (Theorem 3.3). Since qπ is the fixed point of U , from Lemma A.1, and defining
∆q def= q − qπ, we have

Uq(s, a)− qπ(s, a) =
∑
t≥1

γtES1:t,A1:t

[( t−1∏
i=1

ci

)([
Eπ∆q(St, ·)− ct∆q(St, At)

])]

=
∑
t≥1

γtES1:t,A1:t−1

[( t−1∏
i=1

ci

)([
Eπ∆q(St, ·)− EAt [ct(At,Ft)∆q(St, At)|Ft]

])]

=
∑
t≥1

γtES1:t,A1:t−1

[( t−1∏
i=1

ci

)∑
b

(
π(b|St)− µ(b|St)ct(b,Ft)

)
∆q(St, b)

]
.

Now since π(b|St)−µ(b|St)ct(b,Ft) ≥ 0, we have that Uq(s, a)−qπ(s, a) =
∑
y,b wy,b∆q(y, b),

i.e. a linear combination of ∆q(y, b) weighted by non-negative coefficients:

wy,b
def=
∑
t≥1

γtES1:t,A1:t−1

[( t−1∏
i=1

ci

)(
π(b|St)− µ(b|St)ct(b,Ft)

)
I{St = y}

]
.

The sum of those coefficients is:∑
y,b

wy,b =
∑
t≥1

γtES1:t,A1:t−1

[( t−1∏
i=1

ci

)∑
b

(
π(b|St)− µ(b|St)ct(b,Ft)

)]

=
∑
t≥1

γtES1:t,A1:t−1

[( t−1∏
i=1

ci

)
EAt [1− ct(At,Ft)|Ft]

]
=
∑
t≥1

γtES1:t,A1:t

[( t−1∏
i=1

ci

)
(1− ct)

]

= Eµ
[∑
t≥1

γt
( t−1∏
i=1

ci

)
−
∑
t≥1

γt
( t∏
i=1

ci

)]
= γC − (C − 1),

where C = Eµ
[∑

t≥0 γ
t
(∏t

i=1 ci
)]
. Since C ≥ 1, we have that

∑
y,b wy,b ≤ γ. Thus

Uq(s, a) − qπ(s, a) is a sub-convex combination of ∆q(y, b) weighted by non-negative
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coefficients wy,b which sum to (at most) γ, thus U is a γ-contraction mapping around
qπ.

A.5 Increasingly Greedy Policies
Recall the definition of an increasingly greedy sequence of policies.

Definition A.1

We say that a sequence of policies (πk) is increasingly greedy w.r.t. a sequence of
functions (qk) if the following property holds for all k:

Pπk+1qk+1 ≥ Pπkqk+1.

It is obvious to see that this property holds if all policies πk are greedy w.r.t. qk. Indeed
in such case, T πk+1qk+1 = T qk+1 ≥ T πqk+1 for any π. We now prove that this property
holds for εk-greedy policies (with non-increasing (εk)) in the following lemma. Of course
not all policies satisfy this property (a counter-example being πk(a|s) = arg mina′ qk(s, a′)).

Lemma A.2

Let (εk) be a non-increasing sequence. Then the sequence of policies (πk) which
are εk-greedy w.r.t. the sequence of functions (Qk) is increasingly greedy w.r.t. that
sequence.

Proof. From the definition of an ε-greedy policy we have:

Pπk+1qk+1(s, a) =
∑
y

p(y|s, a)
[
(1− εk+1) max

b
qk+1(y, b) + εk+1

1
|A|

∑
b

qk+1(y, b)
]

≥
∑
y

p(y|s, a)
[
(1− εk) max

b
qk+1(y, b) + εk

1
|A|

∑
b

qk+1(y, b)
]

≥
∑
y

p(y|s, a)
[
(1− εk)qk+1(y, arg max

b
qk(y, b)) + ε

1
|A|

∑
b

qk+1(y, b)
]

= Pπkqk+1,

where we used the fact that εk+1 ≤ εk.
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A.6 Proof of Theorem 3.4

As mentioned in the main text, since ci is Markovian, we can define the (sub)-probability
transition operator

(Pcµq)(s, a) def=
∑
s′

∑
a′

p(s′|s, a)µ(a′|s′)c(a′, s′)q(s′, a′).

The Retrace(λ) operator then writes

Ukq = q +
∑
t≥0

γt(Pcµk)t(T πkq − q) = q + (I − γPcµk)−1(T πkq − q).

Proof. We now lower- and upper-bound the term qk+1 − q∗.

Upper bound on qk+1 − q∗. Since Qk+1 = Ukqk, we have

Qk+1 − q∗ = qk − q∗ + (I − γPcµk)−1[T πkqk − qk]
= (I − γPcµk)−1[T πkqk − qk + (I − γPcµk)(qk − q∗)]
= (I − γPcµk)−1[T πkqk − q∗ − γPcµk(qk − q∗)]
= (I − γPcµk)−1[T πkqk − T q∗ − γPcµk(qk − q∗)]
≤ (I − γPcµk)−1[γPπk(qk − q∗)− γPcµk(qk − q∗)]
= γ(I − γPcµk)−1[Pπk − Pcµk](qk − q∗),
= Ak(qk − q∗), (A.2)

where Ak = γ(I − γPcµk)−1[Pπk − Pcµk].
Now let us prove that Ak has non-negative elements, whose sum over each row is at most
γ. Let e be the vector with 1-components. By rewriting Ak as γ

∑
t≥0 γ

t(Pcµk)t(Pπk −
Pcµk) and noticing that

(Pπk − Pcµk)e(s, a) =
∑
s′

∑
a′

p(s′|s, a)[πk(a′|s′)− c(a′, s′)µk(a′|s′)] ≥ 0, (A.3)

it is clear that all elements of Ak are non-negative. We have

Ake = γ
∑
t≥0

γt(Pcµk)t
[
Pπk − Pcµk

]
e

= γ
∑
t≥0

γt(Pcµk)te−
∑
t≥0

γt+1(Pcµk)t+1e
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= e− (1− γ)
∑
t≥0

γt(Pcµk)te

≤ γe, (A.4)

(since
∑
t≥0 γ

t(Pcµk)te ≥ e). Thus Ak has non-negative elements, whose sum over each
row, is at most γ. We deduce from (A.2) that qk+1−q∗ is upper-bounded by a sub-convex
combination of components of qk − q∗; the sum of their coefficients is at most γ. Thus

qk+1 − q∗ ≤ γ‖qk − q∗‖e. (A.5)

Lower bound on qk+1 − q∗. We have

qk+1 = qk + (I − γPcµk)−1(T πkqk − qk)
= qk +

∑
i≥0

γi(Pcµk)i(T πkqk − qk)

= T πkqk +
∑
i≥1

γi(Pcµk)i(T πkqk − qk)

= T πkqk + γPcµk(I − γPcµk)−1(T πkqk − qk). (A.6)

Now, from the definition of εk we have T πkqk ≥ T qk − εk‖qk‖ ≥ T π
∗
qk − εk‖qk‖, thus

qk+1 − q∗ = qk+1 − T πkqk + T πkqk − T π
∗
qk + T π

∗
qk − T π

∗
q∗

≥ qk+1 − T πkqk + γPπ
∗
(qk − q∗)− εk‖qk‖e

Using (A.6) we derive the lower bound:

qk+1 − q∗ ≥ γPcµk(I − γPcµk)−1(T πkqk − qk) + γPπ
∗
(qk − q∗)− εk‖qk‖. (A.7)

Lower bound on T πkqk − qk. By hypothesis, (πk) is increasingly greedy w.r.t. (qk),
thus

T πk+1qk+1 − qk+1 ≥ T πkqk+1 − qk+1

= T πkUqk − Uqk
= r + (γPπk − I)Uqk
= r + (γPπk − I)

[
qk + (I − γPcµk)−1(T πkqk − qk)

]
= T πkqk − qk + (γPπk − I)(I − γPcµk)−1(T πkqk − qk)
= γ

[
Pπk − Pcµk

]
(I − γPcµk)−1(T πkqk − qk)
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= Bk(T πkqk − qk), (A.8)

where Bk = γ[Pπk −Pcµk ](I − γPcµk)−1. Since Pπk −Pcµk has non-negative elements
(as proven in (A.3)) as well as (I−γPcµk)−1, then Bk has non-negative elements as well.
Thus

T πkqk − qk ≥ Bk−1Bk−2 . . .B0(T π0q0 − q0) ≥ 0,

since we assumed T π0q0 − q0 ≥ 0. Thus (A.7) implies that

qk+1 − q∗ ≥ γPπ
∗
(qk − q∗)− εk‖qk‖.

and combining the above with (A.5) we deduce

‖qk+1 − q∗‖ ≤ γ‖qk − q∗‖+ εk‖qk‖.

Now assume that εk → 0. We first deduce that qk is bounded. Indeed as soon as
εk < (1− γ)/2, we have

‖qk+1‖ ≤ ‖q∗‖+ γ‖qk − q∗‖+ 1− γ
2 ‖qk‖ ≤ (1 + γ)‖q∗‖+ 1 + γ

2 ‖qk‖.

Thus lim ‖qk‖ ≤ 1+γ
1−(1+γ)/2‖q

∗‖. Since qk is bounded, we deduce that lim qk = q∗.

A.7 Proof of Theorem 3.5
We first prove the convergence of a general online algorithm.

Theorem A.1

Consider the algorithm

qk+1(s, a) = (1−αk(s, a))qk(s, a)+αk(s, a)(Ukqk(s, a)+ωk(s, a)+υk(s, a)), (A.9)

and assume that (1) ωk is a centered, Fk-measurable noise term of bounded variance,
and (2) υk is bounded from above by θk(‖qk‖+ 1), where (θk) is a random sequence
that converges to 0 a.s. Then, under the same assumptions as in Theorem 3.5, we
have that qk → q∗ almost surely.

Proof. We write U for Uk. Let us prove the result in three steps.
Upper bound on Uqk − q∗. The first part of the proof is similar to the proof of (A.5),

so we have
Uqk − q∗ ≤ γ‖qk − q∗‖e. (A.10)
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Lower bound on Uqk − q∗. Again, similarly to (A.7) we have

Uqk − q∗ ≥ γλPπk∧µk(I − γλPπk∧µk)−1(T πkqk − qk)
+γPπ

∗
(qk − q∗)− εk‖qk‖. (A.11)

Lower-bound on T πkqk − qk. Since the sequence of policies (πk) is increasingly greedy
w.r.t. (qk), we have

T πk+1qk+1 − qk+1 ≥ T πkqk+1 − qk+1

= (1− αk)T πkqk + αkT πk(Uqk + ωk + υk)− qk+1

= (1− αk)(T πkqk − qk) + αk
[
T πkUqk − Uqk + ω′k + υ′k

]
,(A.12)

where ω′k
def= (γPπk − I)ωk and υ′k

def= (γPπk − I)υk. It is easy to see that both ω′k and
υ′k continue to satisfy the assumptions on ωk, and υk. Now, from the definition of the U
operator, we have

T πkUqk − Uqk = r + (γPπk − I)Uqk
= r + (γPπk − I)

[
qk + (I − γλPπk∧µk)−1(T πkqk − qk)

]
= T πkqk − qk + (γPπk − I)(I − γλPπk∧µk)−1(T πkqk − qk)
= γ(Pπk − λPπk∧µk)(I − γλPπk∧µk)−1(T πkqk − qk).

Using this equality into (A.12) and writing ξk
def= T πkqk − qk, we have

ξk+1 ≥ (1− αk)ξk + αk
[
Bkξk + ω′k + υ′k

]
, (A.13)

where Bk
def= γ(Pπk − λPπk∧µk)(I − γλPπk∧µk)−1. The matrix underlying Bk is non-

negative but may not be a contraction mapping (the sum of its components per row
may be larger than 1). Thus we cannot directly apply Proposition 4.5 of [Bertsekas and
Tsitsiklis 1996]. However, as we have seen in the proof of Theorem 3.4, Ak = γ(I −
γλPπk∧µk)−1(Pπk − λPπk∧µk) is a γ-contraction mapping. So now we relate Bk to Ak
using our assumption that Pπk and Pπk∧µk commute asymptotically, i.e. ‖(PπkPπk∧µk −
Pπk∧µkPπk)q‖ = ηk with ηk → 0. For any (sub)-transition matrices U and V , we have

U(I − λγV )−1 =
∑
t≥0

(λγ)tUV t

=
∑
t≥0

(λγ)t
[ t−1∑
s=0

V s(UV − V U)V t−s−1 + V tU
]
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= (I − λγV )−1U +
∑
t≥0

(λγ)t
t−1∑
s=0

V s(UV − V U)V t−s−1.

Replacing U by Pπk and V by Pπk∧µk , we deduce

‖(Bk −Ak)e‖ ≤ γ
∑
t≥0

t(λγ)tηk = γ
1

(1− λγ)2 ηk.

Thus, from (A.13),

ξk+1 ≥ (1− αk)ξk + αk
[
Akξk + ω′k + υ′′k

]
, (A.14)

where υ′′k
def= υ′k + γ

∑
t≥0 t(λγ)tηk‖ξk‖ continues to satisfy the assumptions on υk (since

ηk → 0).
Now, let us define another sequence ξ′k as follows: ξ′0 = ξ0 and

ξ′k+1 = (1− αk)ξ′k + αk(Akξ′k + ω′k + υ′′k ).

We can now apply Proposition 4.5 of [Bertsekas and Tsitsiklis 1996] to the sequence (ξ′k).
The entries of Ak are non-negative, and the sum of their coefficients per row is bounded
by γ, see (A.4), thus Ak are γ-contraction mappings and have the same fixed point which
is 0. The noise ω′k is centered and Fk-measurable and satisfies the bounded variance
assumption, and υ′′k is bounded above by (1 + γ)θ′k(‖qk‖ + 1) for some θ′k → 0. Thus
limk ξ

′
k = 0 almost surely.

Now, it is straightforward to see that ξk ≥ ξ′k for all k ≥ 0. Indeed by induction, let us
assume that ξk ≥ ξ′k. Then

ξk+1 ≥ (1− αk)ξk + αk(Akξk + ω′k + υ′′k )
≥ (1− αk)ξ′k + αk(Akξ′k + ω′k + υ′′k )
= ξ′k+1,

since all elements of Ak are non-negative. Thus we deduce that

lim inf
k→∞

ξk ≥ lim
k→∞

ξ′k = 0 (A.15)

Conclusion. Using (A.15) in (A.11) we deduce the lower bound:

lim inf
k→∞

Uqk − q∗ ≥ lim inf
k→∞

γPπ
∗
(qk − q∗), (A.16)
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almost surely. Now combining with the upper bound (A.10) we deduce that

‖Uqk − q∗‖ ≤ γ‖qk − q∗‖+O(εk‖qk‖) +O(ξk).

The last two terms can be incorporated to the υk(s, a) and ωk(s, a) terms, respectively;
we thus again apply Proposition 4.5 of [Bertsekas and Tsitsiklis 1996] to the sequence (qk)
defined by (A.9) and deduce that qk → q∗ almost surely.

It remains to rewrite the update (3.19) in the form of (A.9), in order to apply The-
orem A.1.
Let zks,t denote the accumulating trace:

zki,t
def=

t∑
j=i

γt−j
( t∏
`=j+1

c`

)
I{(Sj , Aj) = (Si, Ai)}.

Let us write qok+1(Si, Ai) to emphasize the online setting. Then (3.19) can be written as

qok+1(Si, Ai)← qok(Si, Ai) + αk(Si, Ai)
∞∑
t=i

δπkt zki,t, (A.17)

δπkt = Rt+1 + γEπkqok(St+1, ·)− qok(St, At),

Using our assumptions on finite trajectories, and ci ≤ 1, we can show that:

E
[∑
t≥s

zks,t|Fk
]
< E

[
T 2
k |Fk

]
<∞ (A.18)

where Tk denotes trajectory length. Now, let Dk ≡ Dk(Si, Ai)
def=
∑∞
t=i Pr{(St, At) =

(Si, Ai)}. Then, using (A.18), we can show that the total update is bounded, and rewrite

Eµk
[∑
t≥s

δπkt zks,t

]
= Dk(Si, Ai)

(
Ukqk(Si, Ai)− q(Si, Ai)

)
.

Finally, using the above, and writing αk = αk(Si, Ai), (A.17) can be rewritten in the
desired form:

qok+1(Si, Ai)← (1− α̃k)qok(Si, Ai) + α̃k
(
Ukqok(Si, Ai) + ωk(Si, Ai) + υk(Si, Ai)

)
,

(A.19)

ωk(Si, Ai)
def= (Dk)−1

∑
t≥s

δπkt zks,t − Eµk

∑
t≥s

δπkt zks,t

 ,
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υk(Si, Ai)
def= (α̃k)−1(qok+1(Si, Ai)− qk+1(Si, Ai)

)
,

α̃k
def= αkDk.

It can be shown that the variance of the noise term ωk is bounded, using (A.18) and
the fact that the reward function is bounded. It follows from Assumptions 2.2, 2.3 and
3.1 that the modified stepsize sequence (α̃k) satisfies the conditions of Assumption 2.2.
The second noise term υk(Si, Ai) measures the difference between online iterates and
the corresponding offline values, and can be shown to satisfy the required assumption
analogously to the argument in the proof of Prop. 5.2 in [Bertsekas and Tsitsiklis 1996].
The proof relies on the eligibility coefficients (A.18) and rewards being bounded, the
trajectories being finite, and the conditions on the stepsizes being satisfied.
We can thus apply Theorem A.1 to the update (A.19), and conclude that the iterates
qok → q∗ as k → ∞, w.p. 1.

A.8 Asymptotic Commutativity of Pπk and Pπk∧µk

Lemma A.3

Let (πk) and (µk) two sequences of policies. If there exists α such that for all s, a,

min(πk(a|s), µk(a|s)) = απk(a|s) + o(1), (A.20)

then the transition operators Pπk and Pπk∧µk asymptotically commute: ‖(PπkPπk∧µk−
Pπk∧µkPπk)q‖ = o(1).

Proof. For any q, we have

(PπkPπk∧µk)q(s, a) =
∑
y

p(y|s, a)
∑
b

πk(b|y)
∑
z

p(z|y, b)
∑
c

(πk ∧ µk)(c|z)q(z, c)

= α
∑
y

p(y|s, a)
∑
b

πk(b|y)
∑
z

p(z|y, b)
∑
c

πk(c|z)q(z, c) + ‖q‖o(1)

=
∑
y

p(y|s, a)
∑
b

(πk ∧ µk)(b|y)
∑
z

p(z|y, b)
∑
c

πk(c|z)q(z, c) + ‖q‖o(1)

= (Pπk∧µkPπk)q(s, a) + ‖q‖o(1).
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Lemma A.4

Let (πqk) a sequence of (deterministic) greedy policies w.r.t. a sequence (qk). Let
(πk) a sequence of policies that are εk away from (πqk), in the sense that, for all s,

‖πk(·|s)− πqk(s)‖1 = 1− πk(πqk(s)|s) +
∑

a6=πqk (s)

πk(a|s) ≤ εk.

Let (µk) a sequence of policies defined by:

µk(a|s) = αµ(a|s)
1− µ(πqk(s)|s) I{a 6= πqk(s)}+ (1− α)I{a = πqk(s)}, (A.21)

for some arbitrary policy µ and α ∈ [0, 1]. Assume εk → 0. Then the transition
operators Pπk and Pπk∧µk asymptotically commute.

Proof. The intuition is that asymptotically πk gets very close to the deterministic policy
πqk . In that case, the minimum distribution (πk ∧ µk)(·|s) puts a mass close to 1− α on
the greedy action πqk(s), and no mass on other actions, thus (πk ∧ µk) gets very close to
(1− α)πk, and Lemma A.3 applies (with multiplicative constant 1− α).
Indeed, from our assumption that πk is ε-away from πqk we have:

πk(πqk(s)|s) ≥ 1− εk, and πk(a 6= πqk(s)|s) ≤ εk.

We deduce that

(πk ∧ µk)(πqk(s)|s) = min(πk(πqk(s)|s), 1− α)
= 1− α+O(εk)
= (1− α)πk(πqk(s)|s) +O(εk),

and

(πk ∧ µk)(a 6= πqk(s)|s) = O(εk)
= (1− α)πk(a|s) +O(εk).

Thus Lemma A.3 applies (with a multiplicative constant 1 − α) and Pπk and Pπk∧µk
asymptotically commute.
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A.9 Derivation of Eq. (3.4)

From the definition of Uπ,µλ in Eq. (3.2), we have:

Uπ,µλ q(s, a) = (1− λ)Uπ,µ0 + (1− λ)λUπ,µ1 + (1− λ)λ2Uπ,µ2 + . . .

= (1− λ)
∞∑
t=0

λtr(s, a) + (1− λ)Eµ
[
γEπq(S1, ·)

+ λ
(
γ(R2 + Eπq(S1, ·)− q(S1, A1)) + γ2Eπq(S2, ·)

)
+ λ2

(
γ(R2 + Eπq(S1, ·)− q(S1, A1))

+ γ2(R3 + Eπq(S2, ·)− q(S2, A2)) + γ3Eπq(S3, ·)
)

+ . . .
]

(1)= r(s, a) + Eµ
[
(1− λ)γEπq(S1, ·)

+ γλ(R2 + Eπq(S1, ·)− q(S1, A1)) + (1− λ)γ2λEπq(S2, ·)

+ γ2λ2(R3 + Eπq(S2, ·)− q(S2, A2)) + (1− λ)γ3λ2Eπq(S3, ·) + . . .
]

(2)= r(s, a) + Eµ
[
γEπq(S1, ·)

+ γλ(R2 − q(S1, A1)) + γ2λEπq(S2, ·)

+ γ2λ2(R3 − q(S2, A2)) + γ3λ2Eπq(S3, ·) + . . .
]

(3)= q(s, a) + Eµ
[
R1 + γEπq(S1, ·)− q(S0, A0)

+ γλ(R2 + γEπq(S2, ·)− q(S1, A1))+

+ γ2λ2(R3 + Eπq(S3, ·)− q(S2, A2)) + . . .
]

= q(s, a) + Eµ
[ ∞∑
t=0

(γλ)t(Rt+1 + γEπq(St+1, ·)− q(St, At))
]
.

where (1) is due to the fact that (1 − λ)
∑∞
t=0 λ

t = 1, (2) is obtained by expanding
the (1 − λ) factors, and cancelling terms, and (3) is due to the implicit conditioning on
S0, A0 = s, a.
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B.1 Proof of Proposition 4.2

Proof. Verifying that vk+1 is the fixed point of Mk is immediate given (4.12) and the
update for vk+1 from (4.11). Let us now derive contraction factor of Mk. We have that:

Mkv −Mkv
′ = γp(1−β)κk(v − v′).

Since 0 ≤ βos ≤ 1,∀s, o, the entries in p(1−β)κk are nonnegative. Consider the sum of
p(1−β)κk over each row:

ξk(s) = γ
∑
s′

p(1−β)κk(s, s′)

= γ
∑
s′

∑
o

µk(o|s)pπ
o

(s, s′)(1− βos′)

= γ(1−
∑
o

µk(o|s)
∑
s′

pπ
o

(s, s′)βos′)

= γ(1− ck(s)) ≤ γ.

This concludes the proof.
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B.2 Proof of Theorem 4.1

Proof. We will conduct a proof by induction. Assume that v0 ≤ T κkv0 (which can be
attained by pessimistic initialization, vs = −rmax/(1− γ)), and write v∗ for v∗O. We will
show that for all k:

vk ≤ T κkvk ≤ vk+1 ≤ T κk+1vk+1 ≤ v∗ (B.1)

To this end, fix k, and assume vk ≤ T κkvk. We will show (B.1) in three steps.
Step 1: vk ≤ T κkvk ≤ vk+1.
We have that vk ≤ T κkvk = Mkvk, due to the inductive assumption.
Then, by monotonicity of T κk , which implies monotonicity of Mk: vk ≤ T κkvk ≤
Mm
k vk ≤M

m+1
k vk for all positive integers m, and so by taking m→∞, we get

vk ≤ T κkvk ≤ lim
m→∞

(Mk)mvk = vk+1. (B.2)

Step 2: vk+1 ≤ T κk+1vk+1.
From the definition of Mk we have

Mkvk+1 = rκk + γpβκkvk + γ(pκk − pβκk)vk
= T κkvk+1 − γpβκk(vk+1 − vk)

Then, due to the monotonicity of pβκk and the fact that vk+1 − vk ≥ 0 as shown in the
previous step, the above equation implies that

vk+1 = Mkvk+1 ≤ T κkvk+1, (B.3)

where the first equality follows from the fact that vk+1 is the fixed point of Mk. On the
other hand we have by A2, the assumption that the policies are increasingly greedy, that

T κkvk+1 ≤ T κk+1vk+1 (B.4)

The desired inequality then follows from combining (B.4) and (B.3).
Step 3: T κk+1vk+1 ≤ v∗

From the monotonicity of T κk+1 and the relation shown in Step 2, we have that T κk+1vk+1 ≤
(T κk+1)mvk+1 for all positive integers m. Thus taking the limit as m→∞:

T κk+1vk+1 ≤ lim
m→∞

(T κk+1)mvk+1 = vκk+1 ≤ v∗

where the last inequality comes from the definition of v∗ as supπ vπ.
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Putting the three steps together we see by induction that that the desired relation (B.1)
holds for all k. In particular:

vk ≤ vk+1 ≤ v∗,

which implies that the sequence (vk) is monotonic and bounded, and thus converges to
some limit v̄ ≤ v∗. From the definition of Mk in (4.12) we have that

vk+1 = Mkvk+1 = T κkvk + γpβκk(vk+1 − vk).

By taking the limit k →∞ and using the fact that vk+1−vk → 0 and by Assumption 4.1:
limk→∞ T κkvk = T limk→∞ vk = T v̄, we obtain v̄ = T v̄, thus v̄ = v∗, since v∗ is the
unique fixed point of T . Finally, the fixed points of T κ∗ and T µ

∗

O are the same. This
concludes the proof of convergence, and we turn to deriving its rate.

Convergence rate First let us rewrite Eq. (4.18) as:

T µO v = v + (I − γp(1−β)κ)−1(T κv − v).

Since vk → v∗, it follows that for all k larger than some index k̄, κk is optimal, and
T κkv∗ = v∗. Thus, using the above, we have for all k ≥ k̄:

vk+1 − v∗ = vk − v∗ + (I − γp(1−β)κk)︸ ︷︷ ︸
Bk

−1
(T κkvk − vk)

= B−1
k (T κkvk − T v∗ − γp(1−β)κk(vk − v∗))

= γB−1
k (pκk(vk − v∗)− γ(pκk − pβκk)(vk − v∗))

= γ(I − γp(1−β)κk)−1pβκk(vk − v∗)
= Ak(vk − v∗).

where

Ak = γ(I − γ(pκk − pβκk)−1pβκk

= γ
∑
t≥0

γt(pκk − pβκk)tpβκk .

Since pβκk ≤ pκk elementwise, Ak is composed of nonnegative elements. We now look at
its sum over each row. Let e be the vector of all 1s:

Ake = γ
∑
t≥0

(γt(p(1−β)κk)t(pκk − p(1−β)κk)e
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= γ
∑
t≥0

γt(p(1−β)κk)t︸ ︷︷ ︸
C

pκke−
∑
t≥1

(p(1−β)κk)te

= γCe− (Ce− e)
= e− (1− γ)Ce
≤ γe,

since Ce ≥ e. Thus
‖vk+1 − v∗‖∞ ≤ γ‖vk − v∗‖∞.

The coefficient C is state-dependent and we have that:

|vk+1(s)− v∗(s)| ≤ η(s)‖vk − v∗‖∞,

with

η(s) = 1− (1− γ)E ot∼µ(·|st)
st+1∼pπ

ot (·|st)

∑
t≥0

γt

(
t∏
i=1

(1− βot(si))
∣∣∣s0 = s

) ,
where we write

∏0
i=1 x = 1 for simplicity.

B.3 Proof of Proposition 4.3

Proof. From Eq. (4.18), and writing q for qµ,ιβ for less clutter:

q = (I − γP(I−β)ι)−1(rπ + γPβµq),
q − γP(I−β)ιq = rπ + γPβµq,

q = rπ + γPβµq + γP(I−β)ιq

= rπ + γPβµq + γPιq − γPβιq
= rπ + γ(Pβµ − Pβι)q + γPιq.

Solving for q we have:

q = (I − γ(Pβµ − Pβι)− γPι)−1rπ

= (I − γPβµ − γP(I−β)ι)−1rπ
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B.4 Proof of Theorem 4.2

Proof. Write U for Uµζ . Recall that:

coi = ((1− ζo(Si)) + ζo(Si)µ(o|Si))(1− βo(Si)),
q̃(s, o) = [1− ζo(s)]q(s, o) + ζo(s)Eµq(s, ·).

The fact that the fixed point is the desired one is clear from Eq. (4.29) and Proposition 4.3:

Uqµ,ιζ (s, o) = qµ,ιζ (s, o) +
∞∑
t=0

γtEπo
[( t∏

i=1
coi

)
[Rt+1 + γ((1− ζoi )qµ,ιζ (St, o)

+ ζoi (St)Eµqµ,ιζ (St, ·)− qµ,ιζ (St, o)]
]

= qµ,ιζ (s, o) +
∞∑
t=0

γtEπo
[( t∏

i=1
coi

)
(T (I−β)µqµ,ιζ + T βµqµ,ι − qµ,ιζ )(St, o))]

= qµ,ιζ (s, o)

Now, let us derive the contraction result. Eq. (4.29) can be written:

Uq(s, o) =
∞∑
t=0
Eπo

[( t∏
i=1

coi

)
T oct

]
T cot = Rt+1 + γ[q̃(St+1, o)− cot+1q(St+1, o)]

Since Uqµ,ιζ = qµ,ιζ , and after shifting the sum index forward, we have:

Uq(s, o)− qµ,ιζ (s, o) =
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)
∆T cot

]
,

∆T cot = (1− ζot )∆q(St, o) + ζot Eµ∆q(St, ·)− cot∆q(St, o)

= ((1− ζot )− cot )∆q(St, o) + ζot
∑
b

µ(b|St)∆q(St, b)

=
∑
b

(
Ib=o((1− ζbt )− cbt) + ζot µ(b|St)

)
∆q(St, b).

Since cot ≤ (1− ζot ) + ζot µ(o|St) and ζot µ(b|St) ≥ 0,∀b 6= o, we have a linear combination
of ∆q(St, b) weighted by non-negative coefficients wy,b defined as:

wy,b =
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)
(Ib=o((1− ζbt )− cbt) + ζot µ(b|St))ISt=y

]
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whose sum is:

∑
b

wy,b =
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)∑
b

Ib=o((1− ζbt )− cbt) + ζot µ(b|St)
]

=
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)
(((1− ζot )− cot ) +

∑
b

µ(b|St)ζot
]

=
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)
(((1− ζot )− cot ) + ζot )

]
=
∞∑
t=1
Eπo

[( t−1∏
i=1

coi

)
(1− cot )

]
= Eπo

[ ∞∑
t=1

γt
( t−1∏
i=1

coi

)
−
∞∑
t=1

γt
( t∏
i=1

coi

)]
= γC − (C − 1) ≤ γ

where C = Eπo
[∑∞

t=0 γ
t
(∏t

i=1 c
o
i

)]
, and the last inequality is due to C ≥ 1. It follows

that U is a γ-contraction around qµ,ιζ .

B.5 Proof of Corollary 4.1

Proof. We would like for the off-policy trace coi = ((1 − ζo(Si)) + ζo(Si)µ(o|Si))(1 −
βo(Si)) to be larger than the equivalent on-policy trace (1− ζo(Si)).

(1− ζot ) ≤ ((1− ζot ) + ζot µ(o|St))(1− βot )
(1− ζot )βot ≤ ζot µ(o|St)(1− βot )

βot ≤ ζot (µ(o|St)(1− βot ) + βot )

ζot ≥
βot

µ(o|St)(1− βot ) + βot

= 1− µ(o|St)(1− βot )
µ(o|St)(1− βot ) + βot

So if ζ obeys this bound, it is more beneficial to learn it off- rather than on- policy, from
the point of view of convergence speed.
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B.6 Proof of Theorem 4.4
Proof. From Proposition 4.3 we have:

qµ,ιζ − q
µ,ι
β =

∞∑
t=1

γt((Pζµ + P(I−ζ)ι)t − (Pβµ + P(I−β)ι)t)rπ

= (Pζµ + P(I−ζ)ι − Pβµ − P(I−β)ι)
∞∑
t=1

γtAtrπ,

where At = (Pζµ +P(I−ζ)ι −Pβµ −P(I−β)ι)−1((Pζµ +P(I−ζ)ι)t − (Pβµ −P(I−β)ι)t).
Let f =

∑∞
t=1 γ

tAtrπ be a Q-function. Then simple manipulations yield:

qµ,ιζ − q
µ,ι
β = (P(ζ−β)µ + P(I−ζ−I+β))ι)f

= (P(ζ−β)µ − P(ζ−β)ι)f
= (PIµ − PIι)(ζ − β)f
≥ (PIµ − PIι)f ≥ 0,

since the operators PIµ and PIι are monotone, ζ ≥ β and PIµf = maxν P1νf ≥ PIιf
for any Q-function f .
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C | Proofs from Chapter 5

C.1 Proof of Theorem 5.1
Proof. While we assume that the reward model is unchanged, in order to preserve the
appealing form of the option equations, it will be convenient to renormalize the one-step
reward model to be in terms of γ. We hence wish for Roγenv and Roγ to be the same:

Roγenv = (I − γenvp(1−β)πo)−1rπ
o

γenv = (I − γp(1−β)πo)−1rπ
o

γ = Roγ ,

solving which for rπoγ yields the result.

rπ
o

γ = (I − γp(1−β)πo)(I − γenvp(1−β)πo)−1rπ
o

γenv .

The Bellman operator can then be rewritten:

T µOΓγ
q

def= R+ PµOΓγ
q = (I − γP(I−β)ι)−1(rπγ + γPΓβµq).

Let us now derive the fixed point of T µOΓγ
:

q = (I − γP(1−β)π)−1(rπγ + γPΓβµq)
q − γP(1−β)πq = rπγ + γPΓβµq

q = rπγ + γ
(
PΓβµq + P(1−β)πq

)
=
(
I − γ(PΓβµ + P(1−β)π)

)−1
rπγ
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=
∞∑
t=0

γt
(
PΓβµ + P(1−β)π

)t
rπγ .

So B = PΓβµ + P(1−β)π is the corresponding one-step operator. Let us verify that it
induces the new step-discount and termination scheme. Let γo(s, s′) = Γo(s′)βo(s′) +
1− βo(s′). We have:

Bq(s, o) = (PΓβµ + P(1−β)ι)q(s, o)

=
∑
s′

pπ
o

(s′|s)
(∑

o′

µ(o′|s′)Γo(s′)βo(s′)q(s′, o′) + (1− βo(s′))q(s′, o)
)

=
∑
s′

pπ
o

(s′|s)γo(s, s′)
(∑

o′

µ(o′|s′)Γo(s′)βo(s′)
γo(s, s′) q(s′, o′) + 1− βo(s′)

γo(s, s′) q(s′, o)
)

=
∑
s′

pπ
o

(s′|s)γo(s′)
(∑

o′

µ(o′|s′)ζo(s′)q(s′, o′) + (1− ζo(s′))q(s′, o)
)

Thus, we have a new termination scheme ζo(s) = Γo(s)βo(s)
γo(s) , and combining γo with the

step-discount γ, we get our new step discount

γ(s, o, s′) = γγo(s, s′) = γ (Γo(s′)βo(s′) + 1− βo(s′)) = γ (1− βo(s′)(1− Γo(s′))) .

This implies that we have a state-option-dependent contraction factor:

η(s, o) = ES1,S2,...∼pπo

[ ∞∏
i=1

γ(Si, o, Si+1)
]

= ES1,S2,...∼pπo

[ ∞∏
i=1

γ (1− βo(Si)(1− Γo(Si)))
]
≤ γ.

The operator T µOΓγ
is a contraction if η(s, o) < 1. This is trivially true if γ < 1. If γ = 1, in

order for η(s, o) < 1, we need 1−βo(Si)(1−Γo(Si)) < 1 for some Si along the trajectory,
which is the same as βo(Si)(1 − Γo(Si)) > 0 and holds if Assumption 5.1 holds: if such
an Si is reachable by πo, is terminating in the sense that βo(Si) > 0, and Γo(Si) < 1.

C.2 Proof of Lemma 5.1

Throughout we will refer to Γmax
def= maxo∈O,s∈S Γs, and, for each option o, its minimum

and maximum durations domin and domax for an option o: that is domin denote the minimum
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duration of o between any s and s′ in Io. We will also use dmin
def= mino∈O domin, dmax

def=
maxo∈O domax as the global minimum and maximum durations across options.
Before we proceed, let us show two helper bounds.

Lemma C.1

For each option o ∈ O:
|P oΓγ(·|s)|1 ≤ Γomaxγ

domin .

Proof. For each s and s′, the transition model P oΓγ(s′|s) ≤ Γos′γdmin , the minimum dura-
tion. Taking a max over the states s′ yields the result.

Lemma C.2

Let γenv be the environment discount factor used by the reward model. Then, the
value function is bounded:

‖qµΓγ‖∞ ≤
rmax

1− γenv
1

1− Γmaxγdmin
.

Proof. From the definition of qµΓγ , Lemma C.1 and the definition of the reward model R:

‖qµΓγ‖∞ = (I − PµOΓγ
)−1R

≤ 1
1−maxs∈S,o∈O |P oΓγ(·|s)|1

‖R‖∞

≤ 1
1− Γmaxγdmin

rmax

1− γ ,

since ‖PµOΓγ
q‖∞ ≤ maxs∈S,o∈O |P oΓγ(·|s)|1‖q‖∞.

It will now be convenient to change our notation slightly. Let M denote the model
M = (S,O,PO, R), and M̂ = (S,O, P̂O, R), the approximate model with an approximate
transition model. Then qµM and qµ

M̂
are the respective value functions of a policy µ.1

We will show the Lemma in two steps.
1E.g., if M = (S,O,P

OΓγ
, R), qµM = qµΓγ and qµ

M̂
= qµ

Γ̂γ
.
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1) Bounding Eestim in terms of the one-step error Similarly to Lemma 4 from [Jiang
et al. 2015b], we can relate the error in the value functions due to the approximate model
to the maximum one-step error:

Lemma C.3

For any M = (S,O,PO, R), and ∀µ : S→ O, we have:∥∥∥qµ
M̂
− qµM

∥∥∥
∞
≤ 1

1− Γmaxγdmin
max

s∈S,o∈O

∣∣∣Ro(s) + P̂µOq
µ
M (s, o)− qµM (s, o)

∣∣∣ .
Proof. Consider the evolution

qm(s, o) = Ro(s) + P̂µOqm−1(s, o). (C.1)

We can bound the difference between successive estimates:

‖qm − qm−1‖∞ = ‖P̂µO(qm−1 − qm−2)‖∞
≤ max
s∈S,o∈O

|P̂ o(·|s)|1‖qm−1 − qm−2‖∞

= Γmaxγ
dmin‖qm−1 − qm−2‖∞,

due to Lemma C.1 (which of course still applies to the approximate model.) Thus

‖qm − q0‖∞ ≤
m−1∑
k=0
‖qk+1 − qk‖∞ ≤ ‖q1 − q0‖∞

m−1∑
k=1

(Γmaxγ
dmin)k−1.

Since as m→∞, qm = qµ
M̂
, we have that ‖qµ

M̂
−q0‖∞ ≤ 1

1−Γmaxγdmin ‖q1−q0‖∞. Finally,
since q0 can be initialized to qµM , and from Eq. C.1 for m = 1, we have our result:∥∥∥qµ

M̂
− qµM

∥∥∥
∞
≤ 1

1− Γmaxγdmin
max

s∈S,o∈O

∣∣∣Ro(s) + P̂µOq
µ
M (s, o)− qµM (s, o)

∣∣∣ .

Bounding the one-step error with the Hoeffding’s bound Now let us bound the
one-step error in terms of the number of samples. The following Lemma is similar to
Lemma 2 from [Jiang et al. 2015b].
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Lemma C.4

Let P̂ oΓγ denote the modified transition model of an option o averaged over n samples,
and P̂µOΓγ

the corresponding operator w.r.t. some policy over options µ. We have,
with probability 1− δ:

‖R+ P̂µOΓγ
qµΓγ− q

µ
Γγ‖ ≤

rmax

1− γ
1

1− Γmaxγdmin
Γmax(γdmin −γdmax)

√
1

2n log 2|S||O|
δ

,

(C.2)

Proof. The transition model estimate P̂ oΓγ(s′|s) is an average of samples of the form
Γos′γD, where D is the random variable corresponding to option duration. Let X =
Ro(s) + γDΓos′v

µ
Γγ(s′), where vµΓγ(s) =

∑
o µ(o|s)qµΓγ(s, o). We have that:

Ro(s) + γdmaxΓos′v
µ
Γγ(s′) ≤ X ≤ Ro(s) + γdminΓs′vµΓγ(s′).

Thus the range a = Xmin −Xmax of X is:

a = Γos′(γdmin − γdmax)vµΓγ(s′).

Then, since P̂ oΓγ(s′|s) is sampled i.i.d., and qµΓγ(s, o) is the average ofRo(s)+
∑
s′ P̂

o
Γγ(s′|s)vµΓγ(s′),

we have by the Hoeffding’s bound:

Pr(|X − E [X] | ≥ t) ≤ 2 exp
(
−2nt2

a2

)
= 2 exp

(
− 2nt2

(vµΓγ(s′)Γos′(γdmin − γdmax))2

)

We can get the uniform bound by setting the right hand side of the above to δ
|S||O| , and

solving for t:

δ

|S||O|
= 2 exp

(
− 2nt2

(‖vµΓγ‖∞Γmax(γdmin − γdmax))2

)

log 2|S||O|
δ

= 2nt2

(‖vµΓγ‖∞Γmax(γdmin − γdmax))2

t = ‖vµΓγ‖∞Γmax(γdmin − γdmax)
√

1
2n log 2|S||O|

δ

Substituting the bound on ‖vµΓγ‖∞ = ‖qµΓγ‖∞ from Lemma C.2 yields the result.

Lemma 5.1 then follows from combining Lemmas C.3 and C.4
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C.3 Proof of Lemma 5.2
Proof. We have

qµΓγ − q
µ
γenv = PµOΓγ

qµΓγ − P
µ
Oγenv

qµγenv

= PµOΓγ
qµΓγ − P

µ
OΓγ

qµγenv + PµOΓγ
qµγenv − P

µ
Oγenv

qµγenv

= PµOΓγ
(qµΓγ − q

µ
γenv ) + (PµOΓγ

− PµOγenv )qµγenv
= (I − PµOΓγ

)−1(PµOΓγ
− PµOγenv︸ ︷︷ ︸
A

)qµγenv (C.3)

Let us now bound this expression. We will start with the inner term first. Noticing that
PΓβµ = PβµΓ, and from the definitions of the operators, we can expand:

‖Aqµγenv‖ = ‖(PµOΓγ
− PµOγenv )qµγenv‖

=
∣∣∣∣∣∣γPβµΓqµγenv + γP(1−β)ιPµOΓγ

qµγenv −
(
γenvPβµqµγenv + γenvP(1−β)ιPµOγenv q

µ
γenv

) ∣∣∣∣∣∣
≤
∣∣∣∣∣∣Pβµ(γΓ− γenv)qµγenv + P(1−β)ι

(
γPµOΓγ

qµγenv − γenvP
µ
Oγenv

qµγenv

)∣∣∣∣∣∣
=
∣∣∣∣∣∣Pβµ(γΓ− γenv)qµγenv + P(1−β)ι

(
γPµOΓγ

qµγenv − γenvP
µ
OΓγ

qµγenv

+ γenvPµOΓγ
qµγenv − γenvP

µ
Oγenv

qµγenv

)∣∣∣∣∣∣
=
∣∣∣∣∣∣Pβµ(γΓ− γenv)qµγenv + P(1−β)ι

(
(γ − γenv)PµOΓγ

qµγenv

+ γenv(PµOΓγ
qµγenv − P

µ
Oγenv

qµγenv )
)∣∣∣∣∣∣

≤ |Γmaxγ − γenv|‖qµγenv‖+ (γ − γenv)‖PµOΓγ
qµγenv‖+ γenv‖PµOΓγ

qµγenv − P
µ
Oγenv

qµγenv‖

≤ |Γmaxγ − γenv|‖qµγenv‖+ (γ − γenv)γdmin‖qµγenv‖+ γenv‖(PµOΓγ
− PµOγenv )qµγenv‖,

where the last inequality is due to Lemma C.1. Let us simply the first coefficient:

|Γmaxγ − γenv)| = ||Γmaxγ − γ + γ − γenv)| ≤ γ(1− Γmax) + γ − γenv.

Solving for ‖(PµOΓγ
− PµOγenv )qµγenv‖, and by Lemma C.2, we get:

‖(PµOΓγ
− PµOγenv )qµγenv‖ ≤

1
1− γenv

(
γ(1− Γmax) + γ − γenv + (γ − γenv)γdmin

)
‖qµγenv‖

≤ rmax

(1− γenv)2

(
(γ − γenv)(γdmin + 1) + γ(1− Γmax)

)
.
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Finally, from Eq. (C.3) and using the bound on PµOΓγ
from Lemma C.1:

Etarg ≤
rmax

(1− γenv)2
(γ − γenv)(γdmin + 1) + γ(1− Γmax)

1− Γmaxγdmin
.

C.4 Proof of Proposition 5.1
Proof. From Lemma 5.2:

Eestim = (I − PµOΓγ
)−1(PµOΓγ

− PµOγenv )qµγenv

If the inner term is zero, the bias will be zero as well:

(PµOΓγ
− PµOγenv )qµγenv (s, o) = 0

PµOΓγ
qµγenv (s, o) = PµOγenv q

µ
γenv (s, o)∑

s′

P oγ (s′|s)Γos′
∑
o′

µ(o′|s′)qµγenv (s′, o′) =
∑
s′

P oγenv (s′|s)
∑
o′

µ(o′|s′)qµγenv (s′, o′).

Let vµγenv
def= qµγenv . For each option o:

P oγΓovµγenv = P oγenvv
µ
γenv

P oγΓo = P oγenvv
µ
γenv (vµγenv )−1

Γo = (P oγ )−1P oγenv .
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D | Proofs from Chapter 6

D.1 Proof of Theorem 6.1
Proof. We examine the change in the optimal Q-function of the original MDP, resulting
from adding f to the base reward function r. Write Ft+1 = f(St, At, t, St+1, At+1, t+ 1).
We have:

qπh(s, a) = Eπ

[ ∞∑
t=0

γt(Rt+1 + Ft+1)|S0 = s,A0 = a

]
(6.5)= Eπ

[ ∞∑
t=0

γt(Rt+1 + γht+1(St+1, At+1)− ht(St, At))
]

= Eπ

[ ∞∑
t=0

γtRt+1

]
+ Eπ

[ ∞∑
t=1

γtht(St, At)
]
− Eπ

[ ∞∑
t=0

γtht(St, At)
]

= Eπ

[ ∞∑
t=0

γtRt+1

]
− h0(s, a) = qπ(s, a)− h0(s, a).
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