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AI Lab at VUB

I Founded in 1983 by Luc Steels as the first AI lab in mainland
Europe

I focus in evolution of language and construction grammars
I Later (late 90s?), our group split off as a ML offshoot

I Led by Ann Nowe and Bernard Manderick
I 11 PhD students, 5-7 postdocs
I Multi-objective / multi-agent RL, deep RL, game theory,

computational biology
I Applications to wind turbine control, smart grids, HIV

treatment strategies, etc
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This talk

will advocate for potential-based reward shaping as a suitable
paradigm for integrating auxiliary information into RL, in particular
when the information is in the form of behavioral advice, or expert
demonstration data.

3 / 26



The world is full of (questionable) reward functions

I There are many sources of reward complementary to the main
objective

Transfer old policies, similar policies
Unsupervised novelty, auxilary tasks

Supervised domain knowledge, expert data, online feedback

I How to safely combine them with the native reward?
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Reward shaping1

In RL, a naive reward shaping scheme augments the MDP:

M = (S ,A,P, γ,R)→ M ′ = (S ,A,P, γ,R + F ),

where we hope that M ′ is somehow easier.

I F can be wrong

I F can be right, but have
inadvertent consequences

So we want to solve the original M, but use F to solve it quicker.

1Skinner BF, 1938. The behavior of organisms: An experimental analysis.
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Potential-based reward shaping (PBRS)2

Definition
F is potential-based, if ∃Φ : S → R, s.t. ∀s, s ′ ∈ S , a ∈ A:

F (s, a, s ′) = γΦ(s ′)− Φ(s)

Theorem
That F is potential-based is sufficient and necessary (when M is
completely unknown) to guarantee that the optimal policies of
M = (S ,A,P, γ,R) and M ′ = (S ,A,P, γ,R + F ) are the same.

2Ng, Harada and Russel. “Policy Invariance Under Reward
Transformations”. ICML, 1999
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Potential functions encode how good it is to be in a state

Policy invariance

I No positive reward cycles

I The relationship of value functions is just a constant shift:

Q∗M′(s, a) = Q∗M(s, a)− Φ(s)
V ∗M′(s) = V ∗M(s)− Φ(s)

This allows to extend Φ to be over state-actions

I Ideal potential function = optimal value function
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PBRS vs. Q-value initialization

I PBRS fell out of fashion for a time, as it was discovered that
it’s exactly equivalent to Q-value initialization, given the same
stream of experience.3

I When in a tabular setting with a fixed potential function,
initialization is feasible, and might be simpler

I but it gets trickier with function approximation, and
impossible with potential functions that change over time,

I PBRS still provides the only Bellman-consistent mechanism of
combining value functions.

3Wiewiora, E. (2003). Potential-based shaping and Q-value initialization are
equivalent. J. Artif. Intell. Res.(JAIR), 19, 205-208.
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This talk: From information to potentials

I PBRS is theoretically justified, but requires an extra
abstraction – the potential function

I In the rest of the talk, we’ll cover a few ways to obtain a
potential function from whatever information is available. In
particular:

Advice is trivial to express a reward function. We describe a
trick that for an arbitrary reward function, obtains
the corresponding potential function whose induced
shaping reward reflects the desired one exactly.

Expert trajectories. We construct a potential function centered
around the demonstrated state-action pairs with
generalization based on state similarity
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From rewards to potentials: Bellman equations to the
rescue4

I By definition of PBRS we have that the shaping reward

F = γPπΦ− Φ.

I Normally, we know Φ, and calculate F . What if we know F
and would like to obtain Φ?

I Well, Φ = (I − γPπ)−1(−F ), which is exactly something we
can estimate in RL!

I The reason this helps is because
I evaluation is easier
I Φ will be helpful long before convergence

4Harutyunyan, A., Devlin, S., Vrancx, P., and Nowé, A. Expressing Arbitrary
Reward Functions as Potential-Based Advice. In AAAI 2015.
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Empirically it works

Figure: Left: The gridworld example. Right: Cartpole.
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Learning from online feedback

A nice corollary is that it’s possible to soundly learn from sporadic
(e.g. online) feedback.

It wasn’t before because:

I it is very easy to create positive reward cycles with ad hoc
feedback, so non-PB is dangerous

I A naive translation of Φ = RA does not work either:
I Let RA(s, a) = 1 at an approved action and 0 elsewhere
I Then F (s, a, s ′) = Φ(s ′, a′)− Φ(s, a) = −1
I The desired behavior got a negative shaping reward
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Advising Mario online5

I 12 actions

I 7000 state features per action

I The advisor clicked a button if
it approved of Mario’s
behavior, and did nothing
otherwise (a very frustrating
setting)

Variant Advice phase Cumulative

Baseline -376±51 470±83

Non-expert 401±54 677±60

Expert 402±62 774±47

5Harutyunyan, A., Brys, T., Vrancx, P., and Nowé, A. Shaping mario with
human advice (demonstration). In Proceedings of AAMAS 2015.
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Discussion

I Works well when Φ isn’t too hard to learn
I e.g. when the advice is sparse, and has the same sign

I Stability may be an issue, since the potential function must be
learnt on-policy, while in control the behavior typically
changes.

I A policy iteration setting or updating on two timescales is
needed.

14 / 26



Learning from demonstration (LfD)

LfD setting

Turn the learning problem into a classification task:

I Given examples {(si , ai )}Ki=0 of actions in states, and
assuming they are optimal, the goal is to learn the underlying
mapping π : S → A, which by assumption will be optimal.

The assumption is practical, but problematic, as the agent may
never surpass the teacher. We’d like to be able to improve through
learning. But how to incorporate?

15 / 26



Learning from demonstration (LfD)

LfD setting

Turn the learning problem into a classification task:

I Given examples {(si , ai )}Ki=0 of actions in states, and
assuming they are optimal, the goal is to learn the underlying
mapping π : S → A, which by assumption will be optimal.

The assumption is practical, but problematic, as the agent may
never surpass the teacher. We’d like to be able to improve through
learning. But how to incorporate?

15 / 26



Reinforcement learning from demonstration (RLfD)
through shaping6

Let us consider tasks where both demonstrations and an
environment reward signal are available.

I In any goal-directed task (however complex) this can be done
by having a reward of 1 at the goal, and a reward of 0
elsewhere. This will be extremely difficult to learn, but
optimizing it will be sure to do the right thing.

In such tasks, we propose to incorporate demonstration data into
the reward function through PBRS.

6Brys, T., Harutyunyan, A., Suay, H. B., Chernova, S., Taylor, M. E., and
Nowé, A. Reinforcement Learning from Demonstration through Shaping. In
IJCAI 2015
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Similarity-based shaping

Construct a potential function centered around the demonstrated
state-action pairs, with generalization w.r.t. a covariance matrix
over states. Simple form:

Σ = σI ,

g(s, a, sd , ad ,Σ) =

{
e−

1
2

(s−sd )T Σ−1(s−sd ), if a = ad

0, otherwise

Φ(s, a) = max
sd ,ad

g(s, a, sd , ad ,Σ)

17 / 26



Empirical studies: learning curves

Figure: Left: Cartpole, Right: Mario
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Empirical studies: effect of demonstration length (left) and
quality (right)
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Discussion

I Works surprisingly well with a very small number (consistent!)
demonstrations

I Can be robust to the quality of the demonstrations

I Performance depends on the feature covariance kernel: in our
experiments, it was of fixed width, which was a parameter

I Computationally expensive – search for a max over
demonstration pairs at every iteration, but speedup tricks are
possible

20 / 26



Inverse RL through PBRS 7

Inverse RL
Given examples {(si , ai )}Ki=0 of expert actions, infer the reward
function that the expert policy has optimized, and solve the MDP
w.r.t. it

I This work doesn’t assume access to the model, and solves the
MDP from samples.

Same problem of relying on the expert being optimal. We could try
the same trick as before:

1. Infer the expert reward function

2. Learn the potential function that expresses it, as discussed

3. Use PBRS to incorporate it safely

7Suay, H. B., Brys, T., Taylor, M. E., and Chernova, S. Learning from
demonstration for shaping through inverse reinforcement learning. In AAMAS
2016.
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Empirically (Mario)

SBS Φ is similarity-based

HAT another RLfD benchmark

SIS Φ = R (f of state)

DIS Φ is learnt w.r.t. to −R

There is benefit to learning a value function, rather than treating
R as a myopic potential.

22 / 26



Outro

I We advocate using potentials when trying to modify the
reward function.

I It adds an extra safeguard abstraction between the agent and
imperfect domain knowledge

I We discussed a few ways to obtain this abstraction

Philosophically

Dense reward function are dangerous – we don’t know what
loopholes the agent will find. E.g. Atari games are full of these.8

Having a minimalistic reward signal, and many overlapping
potential fields that guide the agent around the environment seems
like an appealing way to think about learning.

8https://openai.com/blog/faulty-reward-functions/
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What’s missing

I A lot of room for theoretical work

I Can we have theoretically grounded prescriptions for “good”
potentials that guarantee improvement in learning given some
assumptions on the reward structure?

I Can we quantify the effect of PBRS beyond it being an
exploration boost?

I E.g. there is intuition that it reduces the planning horizon

Theorem (PBRS reduces planning horizon9)
Let M be the MDP (S ,A,T , γ,R). Let F be a PB reward function w.r.t.
Φ, s.t. ||Φ− V ∗M ||∞ < ε, and let π̂ be the optimal policy for

M̂ = (S ,A,T , γ′,R + F ) for some γ′ < γ. Then:

V π̂
M ≥ V ∗M − Oγ((γ − γ′)ε)

9Ng. Shaping and policy search in reinforcement learning. PhD thesis. 2003.
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exploration boost?

I E.g. there is intuition that it reduces the planning horizon

Theorem (PBRS reduces planning horizon9)
Let M be the MDP (S ,A,T , γ,R). Let F be a PB reward function w.r.t.
Φ, s.t. ||Φ− V ∗M ||∞ < ε, and let π̂ be the optimal policy for

M̂ = (S ,A,T , γ′,R + F ) for some γ′ < γ. Then:

V π̂
M ≥ V ∗M − Oγ((γ − γ′)ε)
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Thank you for your attention!

Questions?
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