
Off-Policy Reward Shaping with Ensembles

Anna Harutyunyan, Tim Brys, Peter Vrancx and Ann Nowé

Vrije Universiteit Brussel
{aharutyu,timbrys,pvrancx,anowe}@vub.ac.be

ABSTRACT
Potential-based reward shaping (PBRS) is an effective and
popular technique to speed up reinforcement learning by
leveraging domain knowledge. While PBRS is proven to
always preserve optimal policies, its effect on learning speed
is determined by the quality of its potential function, which,
in turn, depends on both the underlying heuristic and the
scale. Knowing which heuristic will prove effective requires
testing the options beforehand, and determining the appro-
priate scale requires tuning, both of which introduce addi-
tional sample complexity.

We formulate a PBRS framework that improves learning
speed, but does not incur extra sample complexity. For this,
we propose to simultaneously learn an ensemble of policies,
shaped w.r.t. many heuristics and on a range of scales. The
target policy is then obtained by voting. The ensemble needs
to be able to efficiently and reliably learn off-policy: re-
quirements fulfilled by the recent Horde architecture, which
we take as our basis. We demonstrate empirically that (1)
our ensemble policy outperforms both the base policy, and
its single-heuristic components, and (2) an ensemble over a
general range of scales performs at least as well as one with
optimally tuned components.

1. INTRODUCTION
The powerful ability of reinforcement learning (RL) [25]

to find optimal policies tabula rasa, is also the source of
its main weakness: infeasibly long running times. As the
problems RL tackles get larger, it becomes increasingly im-
portant to leverage all possible knowledge about the domain
at hand. One paradigm to inject such knowledge into the re-
inforcement learning problem is potential-based reward shap-
ing (PBRS) [20]. Aside from repeatedly demonstrated effi-
cacy in increasing learning speed [1, 5, 4, 24], the principal
strength of PBRS lies in its ability to preserve optimal poli-
cies. Moreover, it is the only1 reward shaping scheme that
is guaranteed to do so [20]. At the heart of PBRS meth-
ods lies the potential function. Intuitively, it expresses the
“desirability” of a state, defining the shaping reward on a
transition to be the difference in potentials of the transition-
ing states. States may be desirable by many criteria. The
pursuit of designing a potential function that accurately en-
capsulates the “true” desirability is meaningless, as it would
solve the task at hand [20], and remove the need for learning
altogether. However, one can usually suggest many simple
heuristic criteria that improve performance in different situ-

1Given no knowledge of the environment dynamics.

ations. Choosing the most effective heuristic amongst them
without a test comparison, is typically infeasible, and carry-
ing out such a comparison implies added sample complexity,
that may be unaffordable. Moreover, heuristics may con-
tribute complementary knowledge that cannot be leveraged
in isolation [4].

The choice of a heuristic is merely one of the two decid-
ing factors for the performance of a potential function. The
other (and one that is even less intuitive) is scaling. An ef-
fective heuristic with a sub-optimal scaling factor may make
no difference at all, if the factor is too small, or dominate
the base reward and distract the learner,2 if the factor is too
large. Typically, one is required to tune the scaling factor
beforehand, which requires extra environment samples, and
is infeasible in realistic problems.

We wish to devise a PBRS framework that is capable of
improving learning speed, without introducing extra sample
complexity. To this end, rather than learn a single pol-
icy shaped with the most effective heuristic on its optimal
scale, we propose to maintain an ensemble of policies that all
learn from the same experience, but are shaped w.r.t. differ-
ent heuristics and different scaling factors. The deployment
of our ensemble thus does not require any additional envi-
ronment samples, and frees the designer up to benefit from
PBRS, equipped only with a set of intuitive heuristic rules,
with no necessary knowledge of their performance and value
magnitudes.

Because (for the purpose of not requiring extra environ-
ment samples), all member-policies learn to maximize differ-
ent reward functions from the same experience, the learning
needs to be reliable off-policy. Because the introduced com-
putational complexity (for each of the additional member-
policies) amounts to that of the off-policy learner, we wish
for the learning to be as efficient as possible. The recently
introduced Horde architecture [26] is well-suited to be the
basis of our ensemble, due to its general off-policy conver-
gence guarantees and computational efficiency. In contrast
to the previous uses of Horde [21], we exploit its power to
learn a single task, but from multiple viewpoints.

The convergence guarantees of Horde require a latent learn-
ing scenario [15], i.e. one of (off-policy) learning under a
fixed (or slowly changing) behavior policy. This scenario is
particularly relevant to real-world applications, where fail-
ure is highly penalized and the usual trial-and-error tactic
is implausible, e.g. robotic setups. One could imagine the

2The agent will eventually still uncover the optimal policy,
but instead of helping him get there faster, reward shaping
would slow the learning down.



agent following a safe exploratory policy, while learning the
target control policy, and only executing the target policy
after it is learnt. That is the scenario we focus on in this
paper. Note that the conventional interpretation of PBRS
to steer exploration [6], does not apply here, as the behavior
is unaffected by the target policy, and is kept fixed. This
work (and its precursor [8]) provides, to our knowledge, the
first validation of PBRS effective in such a latent setting.

Our contribution is two-fold: (1) we formulate and empir-
ically validate a PBRS framework as a policy ensemble, that
is capable of increasing learning speed without adding extra
sample complexity, and that does so with general conver-
gence guarantees. Specifically, we demonstrate how such an
ensemble can be used to lift the problems of both the choice
of the potential function and its scaling, thus removing the
need of behind-the-scenes tuning necessary before deploy-
ment; and (2) we validate PBRS to be effective in a latent
off-policy setting, in which it cannot steer the exploration
strategy.

In the following section we give an overview of the pre-
liminaries. Section 3 motivates our approach further, while
Section 4 describes the proposed architecture and the voting
techniques used to obtain the target ensemble policy. Sec-
tion 5 presents empirical results in two classical benchmarks,
and Section 6 concludes.

2. BACKGROUND
We assume the usual RL framework [25], in which the

agent interacts with its (typically) Markovian environment
at discrete time steps t = 1, 2, . . .. Formally, a Markov De-
cision Process (MDP) [22] is a tuple M = 〈S,A, γ, T , R〉,
where: S is a set of states, A is a set of actions, γ ∈ [0, 1]
is the discounting factor, T = {Psa(·)|s ∈ S, a ∈ A} are the
next state transition probabilities with Psa(s′) specifying the
probability of state s′ occuring upon taking action a from
state s, R : S × A × S → R is the reward function with
R(s, a, s′) giving the expected value of the reward that will
be received when a is taken in state s, and rt+1 denoting
the component of R at time t.

A (stochastic) Markovian policy π : S × A → [0, 1] is
a probability distribution over actions at each state, s.t.
π(s, a) gives the probability of action a being taken from
state s under policy π. In the deterministic case, we will
take π(s) = a to mean π(s, a) = 1.

Value-based methods encode policies through value func-
tions, which denote expected cumulative reward obtained
while following the policy. We focus on state-action value
functions. In a discounted setting:

Qπ(s, a) = ET ,π
[ ∞∑
t=0

γtrt+1|s0 = s, a0 = a
]

(1)

An action a∗ is greedy in a state s, if it is the action of
maximum value in s. A (deterministic) policy is greedy, if
it picks the greedy action in each state:

π(s) = arg max
a

Qπ(s, a),∀s ∈ S (2)

A policy π∗ is optimal if its value is largest:

Q∗(s, a) = sup
π
Qπ(s, a),∀s ∈ S, ∀a ∈ A

The learning is on-policy if the behavior policy πb that the
agent is following is the same as the target policy π that
the agent is evaluating. Otherwise, it is off-policy. Given
πb, the values of the optimal greedy policy can be learned
incrementally through the following Q-learning [30] update:

Qt+1(st, at) = Qt(st, at) + αtδt (3)

δt = rt + γ max
a∗∈A

Qt(st+1, a
∗)−Qt(st, at) (4)

where Qt is an estimate of Qπ at time t, αt ∈ (0, 1) is the
learning rate at time t, at is chosen according to πb, δt is
the temporal-difference (TD) error of the transition. st+1 is
drawn according to T , given st and at, and a∗ is the greedy
action w.r.t. Qt in st+1 Given tabular representation, this
process is shown to converge to the correct value estimates
(the TD-fixpoint) in the limit under standard approximation
conditions [9].

When the state or action spaces are too large, or continu-
ous, tabular representations do not suffice and one needs to
use function approximation (FA). The state (or state-action)
space is then represented through a set of features φ, and
the algorithms learn the value of a parameter vector θ. In
the (common) linear case:

Qt(s, a) = θTt φs,a, ∀s ∈ S, ∀a ∈ A (5)

and Eq. (3) becomes:

θt+1 = θt + αtδtφt, (6)

where we slightly abuse notation by letting φt denote the
state-action features φst,at , and δt is still computed accord-
ing to Eq. (4).

In the next two subsections we present the core ingredients
to our approach.

2.1 Horde
FA is known to cause off-policy bootstrapping methods

(such as Q-learning) to diverge even on simple problems [2,
28]. The family of gradient temporal difference (GTD) meth-
ods provides a solution for this issue, and guarantees off-
policy convergence under FA, given a fixed (or slowly chang-
ing behavior) [26]. Previously, similar guarantees were pro-
vided only by second-order batch methods (e.g. LSTD [3]),
unsuitable for online learning. GTD methods are the first
to maintain these guarantees, while maintaining the (time
and space) complexity linear in the size of the state space.
Note that linearity is a lower bound on what is achievable,
because it is required to simply store and access the learn-
ing vectors. As a consequence, GTD methods scale well to
the number of value functions (policies) learnt [19], and due
to the inherent off-policy setting, can do so from a single
stream of environment interactions (or experience). Sutton
et al. [27] formalize this idea in a framework of parallel off-
policy learners, called Horde. They demonstrate Horde to be
able to learn thousands of predictive and goal-oriented value
functions in real-time from a single unsupervised stream of
sensorimotor experience. There have been further successful
applications of Horde in realistic robotic setups [21].

On the technical level,3 GTD methods are based on the
3Please refer to Maei’s dissertation for the full details [13].



idea of performing gradient descent on a reformulated ob-
jective function, which ensures convergence to the projected
TD-fixpoint, by introducing a gradient bias into the TD-
update [26]. Mechanistically, it requires maintaining and
learning a second set of weights w, along with θ, and per-
forming the following updates:

θt+1 = θt + αtδtφt − αγφ′t(φTt wt) (7)

wt+1 = wt + βt(δt − φTt wt)φt (8)

where δt is still computed with Eq. (4), and φ′t is the
feature vector of the next state and action. This is a sim-
pler form of the GTD-update, namely that of TDC [26].
GQ(λ) [14] augments this update with eligibility traces.

Convergence is one of the two theoretical hurdles with off-
policy learning under FA. The other has to do with the qual-
ity of solutions under off-policy sampling, which may, in gen-
eral, fall far from optimum, even when the approximator can
represent the true value function well. In, to our knowledge,
the only work that addresses this issue, Kolter [10] gives
a way of constraining the solution space to achieve stronger
qualitative guarantees, but his algorithm has quadratic com-
plexity and thus is not scalable. Since scalability is crucial in
our framework, Horde remains the only plausible convergent
architecture available.

2.2 Reward Shaping
Reward shaping augments the true reward signal R with

an additional shaping reward F , provided by the designer.
The shaping reward is intended to guide the agent, when
the environmental rewards are sparse or uninformative, in
order to speed up learning. In its most general form:

R′ = R+ F (9)

Because tasks are identified by their reward function, mod-
ifying the reward function needs to be done with care, in
order to not alter the task, or else reward shaping can slow
down or even prevent finding the optimal policy [23]. Ng et
al. [20] show that grounding the shaping rewards in state po-
tentials is both necessary and sufficient for ensuring preser-
vation of the (optimal) policies of the original MDP. Potential-
based reward shaping (PBRS) maintains a potential function
Φ : S → R, and defines the auxiliary reward function F as:

F (s, a, s′) = γΦ(s′)− Φ(s) (10)

where γ is the discounting factor of the MDP. We refer to
the rewards, value functions and policies, augmented with
shaping rewards as shaped. Shaped policies converge to the
same (optimal) policies as the base learner, but differ during
the learning process.

3. A HORDE OF SHAPINGS
The key insight in ensemble learning is that the strength

of an ensemble lies in the diversity its components con-
tribute [11]. In the RL context, this diversity can be ex-
pressed through several aspects, related to dimensions of the
learning process: (1) diversity of experience, (2) diversity of
algorithms and (3) diversity of reward signals. Diversity of
experience naturally implies high sample complexity, and
assumes either a multi-agent setup, or learning in stages.
Diversity of algorithms (given the same experience) is com-
putationally costly, as it requires separate representations,

and one needs to be particular about the choice of algo-
rithms due to convergence considerations.4 In the context
of our aim of increasing learning speed, without introduc-
ing complexity elsewhere, we focus on the latter aspect of
diversity: diversity of reward signals.

PBRS is an elegant and theoretically attractive approach
to introducing diversity into the reward function, by drawing
from the available domain knowledge. Such knowledge can
often be described as a set of simple heuristics. Combining
the corresponding potentials beforehand näıvely (e.g. with
linear scalarization) may result in information loss, when the
heuristics counterweigh each other, and introduce further
scaling issues, since the relative magnitudes of the potential
functions may differ. Maintaining the shapings separately
has recently been shown to be a more robust and effective
approach [4]. Under the requirements of convergence and
efficiency, maintaining such an ensemble of policies learning
in parallel and shaped with different potentials, is only pos-
sible via the Horde architecture, which is the approach we
take in this paper. Thus, the proposed ensemble is the first
of its kind to possess general convergence guarantees.

Horde’s demonstrated ability to learn thousands of poli-
cies in parallel in real time [27, 19] allows to consider large
ensembles, at little computational cost. While defining thou-
sands of distinct heuristics is rarely sensible, each heuristic
may be learnt on many different scaling factors. This not
only frees one from having to tune the scaling factor a priori
(one of the issues we focus on in this paper), but potentially
allows for automatically dynamic scaling, corresponding to
state-dependent shaping magnitudes.

Shaping Off-Policy
The effects of PBRS on the learning process are usually con-
sidered to lie in the guidance of exploration during learn-
ing [6, 17, 20]. Laud and DeJong [12] formalize this by
showing that the difficulty of learning is most dependent on
the reward horizon, a measure of the number of decisions
a learning agent must make before experiencing accurate
feedback, and that reward shaping artificially reduces this
horizon. In our latent setting we assume no control over
the agent’s behavior. The performance benefits then can be
explained by faster knowledge propagation through the TD
updates, which we now observe decoupled from guidance of
exploration.

Reward shaping in such off-policy settings is not well stud-
ied or understood, and these effects are of independent in-
terest.

4. ARCHITECTURE
We are now ready to describe the architecture of our en-

semble (Fig. 1).We maintain our Horde of shapings as a
set D of Greedy-GQ(λ)-learners [14]. Given a set of po-
tential functions Φ = {Φ1, . . .Φ`} a range of scaling factors
ci = 〈ci1, . . . ciki〉 for each Φi, and the base reward function
R, the ensemble reward function is a vector:

R = R+ 〈FΦ1

c11
, FΦ1

c12
, . . . , F

Φ`

c`
k`

〉 (11)

where FΦi

cij
is the potential-based shaping reward given

4See the discussion on convergence in Section 6.1.2 of van
Hasselt’s dissertation [29].



by Eq. (10) w.r.t. the potential function Φi and scaled with
the factor cij . For notational clarity, we will take F ij to mean

FΦi

cij
(i.e. the shaping w.r.t. to the i-th potential function

on the j-th scaling factor), and Rij = R+ F ij . We allow the
ensemble the option to include the base learner.

We adopt the terminology of Sutton et al. [27], and refer
to individual agents within Horde as demons. Each demon
dij learns a greedy policy πij w.r.t. its reward Rij . Recall
that our latent setting implies that the learning is guided
by a fixed behavior policy πb, with πij all learning in par-
allel from the experience generated by πb. Because each
policy πij is available separately at each step, an ensemble
policy can be devised by collecting votes on action prefer-
ences from all demons dij . The ensemble is also latent, and
not executed until the learning has ended. Note that be-
cause PBRS preserves all of the optimal policies from the
original problem [20], the ensemble policy does too.

In this paper we have considered two voting schemes: ma-
jority voting and rank voting, which are elaborated below.
The architecture is certainly not limited to these choices.

4.1 Ensemble Policy
To the best of our knowledge, both voting methods were

first used in the context of RL agents by Wiering and Van
Hasselt [31]. In both methods, each demon d casts a vote
vd : S×A→ N0, s.t. vd(s, a) is the preference value of action
a in state s. The voting scheme then is defined for policies,
rather than value functions, which mitigates the magnitude
bias.5 The ensemble policy acts greedily (with ties broken
randomly) w.r.t. the cumulative preference values P :

P (st, a) =
∑
d∈D

vd(st, a), ∀a ∈ A (12)

The voting scheme determines the manner in which vd are
assigned.

Majority voting Each demon d casts a vote of 1 for its
most preferred action, and a vote of 0 for the others.
I.e.:

vd(s, a) =

{
1 if Q(s, a) = max

a∗
Q(s, a∗)

0 otherwise.
(13)

Rank voting Each demon greedily ranks its n actions, from
n − 1 for its most, to 0 for its least preferred ac-
tions. We slightly modify the formulation from [31], by
ranking Q-values, instead of policy probabilities. I.e.
vd(s, a) > vd(s, a

′), if and only if Qd(s, a) > Qd(s, a
′).

5. EXPERIMENTS
We now present the empirical studies that validate the ef-

ficacy of our ensemble architecture w.r.t. both the choice of
heuristic and the choice of scale. We first consider the sce-
nario of choosing between heuristics, and evaluate an ensem-
ble consisting of shapings with appropriate scaling factors.
The experiments show that the ensemble policy performs
at least as well as the best heuristic. We then turn to the

5Note that even though the shaped policies are the same
upon convergence – the value functions are not.
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Figure 1: An overview of the Horde architecture used to learn
an ensemble of shapings (including the base learner). Vectors
are indicated with bold lines. Rij is the reward obtained when

applying Φi to R and scaling with cij . The blue output of the

linear function approximation block are the features of the
transition (two state-action pairs), with their intersections with
θij representing weights. a′ is a vector of greedy actions at s′

w.r.t. to each policy πij . Note that in this latent settings, all

interactions with the environment happen only in the upper left
corner.

problem of scaling, and demonstrate that ensembles on both
narrow and broad ranges of scales perform at least as well
as the one w.r.t. the optimal scaling factors.

We carry out our experiments on two common benchmark
problems. In both problems, the behavior policy is a uni-
form distribution over all actions at each time step. The
evaluation is done by interrupting the base learner every z
episodes and executing the queried greedy policy once. No
learning is allowed during evaluation.

We evaluated the ensembles w.r.t. both voting schemes
from Sec. 4.1, and found the (sum) performance to be not
significantly different (p > 0.05), with rank voting perform-
ing slightly better. To keep the clarity of focus, below we
only present the results for the rank voting scheme, but
emphasize that the performance is not conditional on this
choice.

5.1 Mountain Car
We begin with the classical benchmark domain of moun-

tain car [25]. The task is to drive an underpowered car up
a hill. The (continuous) state of the system is composed of
the current position (in [−1.2, 0.6]) and the current velocity
(in [−0.07, 0.07]) of the car. Actions are discrete, a throttle
of {−1, 0, 1}. The agent starts at the position −0.5 and a
velocity of 0, and the goal is at the position 0.6. The re-
wards are −1 for every time step. An episode ends when
the goal is reached, or when 2000 steps have elapsed. The
state space is approximated with the standard tile-coding



technique [25], using ten tilings of 10×10, with a parameter
vector learnt for each action.

In this domain we define three intuitive shaping potentials:

Position Encourage progress to the right (in the direction
of the goal). This potential is flawed by design, since
in order to get to the goal, one needs to first move
away from it.

Φ1(x) = x̄ (14)

Height Encourage higher positions (potential energy):

Φ2(x) = h̄ (15)

Speed Encourage higher speeds (kinetic energy):

Φ3(x) = |¯̇x|2 (16)

Here x = 〈x, ẋ〉 is the state (position and velocity), and ā
denotes the normalization of a onto [0, 1].

We used γ = 0.99. The learning parameters were tuned
w.r.t. the base learner and shared among all demons: λ =
0.4, β = 0.0001, α = 0.1, where λ is the trace decay pa-
rameter, β the step size for the second set of weights w in
Greedy-GQ, and α the step size for the main parameter vec-
tor θ. We ran 1000 independent runs of 100 episodes each,
with evaluation occuring every 5 episodes (z = 5).
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Figure 2: Learning curves of the single shapings and their
ensembles in mountain car. E1, the ensemble of two comparable
shapings, outperforms both of them, whereas E2, the ensemble
of all three shapings, matches (p > 0.05) the performance of the

(more effective) third shaping d3.

5.1.1 Choice of Heuristic
In this experiment6 we address the question of the choice

between heuristics. We thus consider ensembles composed
of the demons shaped with the three shaping potential func-
tions Φ1,Φ2 and Φ3, and scaled with factors c1, c2, c3 that
have been tuned beforehand. We associate the learner di
with dΦi

ci .
When evaluating the shapings individually, we witness d3

to perform best amongst the three. To examine the quality
of our ensembles w.r.t. the quality of its components, we

6This experiment first appeared in the early version of this
work [8].

consider two scenarios: E1 = 〈d1, d2〉 of two demons and
E2 = 〈d1, d2, d3〉 of three demons. This corresponds to hav-
ing ensemble consisting of two comparable shapings, and an
ensemble with one clearly most efficient shaping. Thus, ide-
ally, we would like E1 to outperform both d1 and d2 and E2

to at least match the performance of d3.
Fig. 2 presents the learning performance of the base agent,

the demons d1, d2, d3 shaped with single potentials, and the
two ensembles E1 and E2, mentioned above. We witness the
individual shapings alone to aid the learning significantly.
E1 follows d1 at first, when its performance is better, but
switches to d2, when the performance of d1 levels out. This
is because d1 (as is appropriate with its position shaping)
persists on going right in the beginning of an episode, and
this strategy, while effective at first, results in a plateau of
a higher number of steps. The ensemble policy is able to
avoid this by incorporating information from d2.
E2, the ensemble of all three shapings, begins better than

both d1 and d2, but slightly worse than d3, the most effec-
tive shaping. It, however, quickly catches up to d3, with the
overall performance of E2 and d3 being statistically indis-
tinguishable.

Thus, the performance of the ensembles meets our desider-
ata: when there is clearly a best component, an ensemble
statistically matches it, otherwise it outperforms all of its
components.

5.1.2 Choice of Scale
The previous set of experiments assumed access to the

best scaling factors c1, c2, c3. In practice obtaining these
requires tuning each shaping prior to the use of the ensemble,
a scenario we aim to avoid. In this section we demonstrate
that ensembles on a range of scales perform at least as well,
as those with cherry-picked components.

Namely, we consider two scaling ranges C1 = 〈20, 40, 60, 80, 100〉
and C2 = 〈1, 10, 102, 103, 104〉, with the first being a rea-
sonably close range to the optimal scales from the previous
section, and the second being a general sweep, with no intu-
ition or knowledge of the optimal scale. Before we proceed
further, we illustrate the effect a scaling factor can have on
the performance of a single shaping. Fig. 3 gives a com-
parison of the performance of the shaping potential Φ2 over
the (reasonable) scaling range C1. Even small differences in
scale have dramatic effect on the shaping’s performance.

Now let EC1 and EC2 be the ensembles w.r.t. all three
shapings on C1 and C2, resp., each totaling in 16 demons
(including the base learner). We compare EC1 and EC2

with E2 (the ensemble w.r.t. the three shapings with tuned
scaling factors, from the first experiment). We illustrate the
range of performances of shapings for each scale range, by
additionally plotting the average of the runs of each shaping
across each scale. I.e. for the range Cj , and shaping Φi, at
each episode, this is the average of the rewards obtained by
the demons di1, di2,. . .,di|Cj | in that episode.

Fig. 4 presents the results. EC1 and EC2 are both sta-
tistically the same (p > 0.05) as the tuned ensemble E2,
despite their components having a much wider range of per-
formance.

5.2 Cart-Pole
We now validate our framework on the problem of cart-

pole [18]. The task is to balance a pole on top of a moving
cart for as long as possible. The (continuous) state s con-
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Figure 4: Learning curves of the ensembles over the scale ranges
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of the three shapings) are the mean performance of the demons
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the performance of the ensemble components. Note that there is

no single demon with this performance. The performances of
ensembles EC1 and EC2 are not significantly different from that

of E2: the ensemble w.r.t. tuned components.

tains the angle ξ and angular velocity ξ̇ of the pole, and
the position x and velocity ẋ of the cart. There are two
actions: a small positive and a small negative force applied
to the cart. A pole falls if |ξ| > π

4
, which terminates the

episode. The track is bounded within [−4, 4], but the sides
are “soft”; the cart does not crash upon hitting them. The
reward function penalizes a pole drop, and is 0 elsewhere.
An episode terminates successfully, if the pole was balanced
for 1000 steps. The state space is approximated with tile
coding, using ten tilings of 10 × 10 over all 4 dimensions,
with a parameter vector learnt for each action.

We define two potential functions, corresponding to the
angle and angular speed of the pole.

Angle Discourage angles far from the equilibrium:

Φ1(s) = − ¯|ξ|2 (17)

Angular speed Discourage high speeds (which are likelier

to result in dropping the pole):

Φ2(s) = −| ¯̇ξ|2 (18)

We used γ = 0.99. The learning parameters were tuned
w.r.t. the base learner and set to λ = 0.7, α = 0.1 and
β = 0.001. These settings were shared among all demons.
We ran 100 independent runs of a 1000 episode each, with
evaluation occuring every 50 episodes (z = 50).

5.2.1 Choice of Heuristic and Scale
In this experiment we evaluate the problems of the choice

of the heuristic and its scale jointly. We consider a general
scaling range C = 〈1, 10, 102, 103, 104〉, and three ensembles:
E1
C resp. E2

C only comprised of the demons shaped w.r.t.
Φ1 resp. Φ2 across C (5 demons each), and EC containing
all 11 demons (including the base learner). As before, we
illustrate the range of performances of shapings across the
range of scales by, for each shaping, plotting the average
performance of the demons w.r.t. that shaping across the
entire scale range. I.e. for the shaping Φi, at each episode,
this is the average of the rewards obtained by the demons
di1, di2,. . .,di|C| in that episode.
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Figure 5: Learning curves for the ensembles E1
C , E2

C and EC in
cart-pole. The dashed lines (for each of the two shapings)
denote the mean performance of the demons w.r.t. C, and
plotted as a reference for the performance of the ensemble
components. Note that there is no single demon with this
performance. The performances of the global ensemble EC

follows the (more effective) first shaping, in the end matching
the performance of the corresponding ensemble E1

C .

Fig. 5 shows the results. All ensembles (and ensemble av-
erages) improve over the base learner. The performance of
E2
C , the ensemble over the second shaping, matches that of

the average from that ensemble, since all of its components
perform similarly. On the other hand, E1

C , the ensemble over
the first shaping, does much better than the corresponding
average. The global ensemble EC over all of the demons
starts out better than both E1

C and E2
C , then levels at the

average performance of the (better) first shaping, and finally
matches the performance of E1

C . The global ensemble EC
thus correctly identifies both which shaping to follow: its
performance always follows (or is better than) that of the
more efficient first shaping (either on average, or the ensem-
ble E1

C), and on what scales: the final performance of EC
matches that of E1

C , significantly improving over the average
across the scale range.



6. CONCLUSIONS
In this work we described a novel off-policy PBRS ensem-

ble architecture that is able to improve learning speed in a
latent setting, without requiring the extra sample complex-
ity introduced by the steps of tuning the heuristic and its
scale, typical to PBRS. We avoid these steps by learning an
ensemble of policies w.r.t. many heuristics and scaling fac-
tors simultaneously. Our ensemble possesses general conver-
gence guarantees, while staying efficient, as it leverages the
recent Horde architecture to learn a single task well. Our ex-
periments validate the use of PBRS in the latent setting, and
demonstrate the efficacy of the proposed ensemble. Namely,
we show that the ensemble policy over both broad and nar-
row ranges of scales performs at least as well as the one
over a set of optimally pre-tuned components, which in turn
performs at least as well as its best component-heuristic.

Future Directions
In this work we have assumed a shared set of parameters
between the demons, an immediate extension would be to
maintain demons that learn w.r.t. different parameters.
This is similar to the approach of Marivate and Littman [16],
who learn to solve many variants of a problem for the best
parameter settings in a generalized MDP. In our case the
MDP (dynamics) will remain shared, but the individual pa-
rameters of the demons will vary.

It would be worthwhile to evaluate the framework w.r.t.
different ensemble techniques that induce the target ensem-
ble policy. This would be especially useful in domains where
only select scaling factors of select heuristics offer improve-
ment: taking a global majority vote over such an ensemble
will likely not be as effective, as trying to determine which
subset of demons to consider. One could, e.g., use confidence
measures [4] to identify these demons.

Instead of shaping demons with static potential functions,
one could consider maintaining a layer of demons that each
learn some potential function [17, 7], which are, in turn, fed
into the layer of shaped demons who contribute to the en-
semble policy. One needs to be realistic about attainability
of learning this in time, since as argued by Ng et al. [20],
the best potential function correlates with the optimal value
function V ∗, learning which would solve the base problem
itself and render the potentials pointless.
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