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Abstract. In this work we propose learning an ensemble of policies
related through potential-based shaping rewards via the off-policy
Horde framework.

1 Introduction and background

Ensemble techniques are widespread in supervised learning, but their
use in reinforcement learning (RL) [9] has been extremely sparse
thus far. We seek to formulate a RL ensemble that is effective at
improving learning speed, the bottleneck of RL. In the context of
this goal, the ensemble needs to learn in parallel efficiently. Recently
proposed Horde architecture [10] fills this bill, and is the first to also
possess convergence guarantees in realistic setups. In contrast to the
previous uses of Horde, we exploit its power for learning a single task
faster. The policies in our ensemble are obtained through potential-
based reward shaping (PBRS), each expressing different pieces of
heuristic domain knowledge, and are then combined via a voting
rule. Maintaining multiple shapings allows leveraging the strengths
of different heuristics without having to design a complex shaping
reward [2].

The scenario we consider is that of off-policy learning under fixed
behavior, i.e. latent learning. Such is often the setup in applications
where the environment samples are costly and a failure is highly pe-
nalized. To our knowledge, this is the first validation of PBRS effec-
tive in such a latent setting, where it does not actively guide explo-
ration.

For omitted details in discussion and experiment setup, please see
the full version of this paper [5]. For standard background on re-
inforcement learning, see Sutton and Barto [9]. We briefly give the
ingredients of the described approach.

Reward shaping augments the true reward signal with an ad-
ditional heuristic shaping reward, provided by the designer. Ng et
al. [8] show that grounding the shaping rewards in state potentials is
both necessary and sufficient for ensuring preservation of the (opti-
mal) policies of the original task. PBRS maintains a potential func-
tion ® : S — R, and defines the auxiliary reward function F' as
F(s,a,s") = v®(s") — ®(s), where  is the usual discounting fac-
tor.

Horde Learning about a (farget) policy that is different from
the (behavior) one currently followed, is referred to as learning
off-policy. Despite its versatility, off-policy learning suffers from
convergence issues, when combined with function approximation

(FA) [1]. This problem was recently addressed by the family of gra-
dient temporal-difference methods, which became the cornerstone
for Horde: a convergent scalable architecture for learning multiple
value functions off-policy from a shared stream of experience [10].

2 Ensembles of Shapings

Most previous uses of ensembles of policies involved indepen-
dent runs for each policy, with the combination happening post-
factum [3]. This is limited in practical utility, since it requires a large
computational and sample overhead, assumes a repeatable setup, and
does not improve learning speed. Others, in general, lack conver-
gence guarantees,” by either using mixed on- and off-policy learn-
ers [12], or Q-learners under FA [2]. In general, when considering
policy ensembles, an off-policy learning setup seems inevitable; it
is only useful if the policies reflect information different from the
behavior, since the strength of ensemble learning lies in the diver-
sity of information its components contribute [7]. Horde is the first
framework that allows to soundly and efficiently learn multiple value
functions off-policy in parallel in a realistic setup. For this reason,
we believe it to be well-suited for ensemble learning in RL.

Diversity in the RL context can be expressed through several as-
pects, related to dimensions of the learning process: (1) diversity of
experience, (2) diversity of algorithms and (3) diversity of reward
signals. Diversity of experience naturally implies high sample com-
plexity, and assumes either a multi-agent setup, or learning in stages.
Diversity of algorithms is computationally costly, as it requires sepa-
rate representations. In the context of our aim of improving learning
speed, we focus on the latter aspect of diversity: diversity of reward
signals. Recall that shaping rewards encode heuristics about the de-
sirability of states. Prior to solving a task, it is typically much easier
to think of many simple, albeit imperfect heuristics, than a complex
but accurate cure-all. Combining these simple potentials beforehand
naively (e.g. with linear scalarization) is uninformative, since they
may counterweigh each other in some parts of the space, and “can-
cel out”. Learning and maintaining al/ of them simultaneously, on
the other hand, has been infeasible prior to Horde, given a desire to
maintain general convergence guarantees and stay efficient. Having
access to all shapings at each step opens up new opportunities for
autonomous combination, e.g. with ensemble methods.

Shaping off-policy The effects of PBRS on the learning process
are usually considered to lie in the guidance of exploration during
learning [4, 8], while in our setting we assume no control over the
agent’s behavior. The performance benefits then can be explained by
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faster knowledge propagation through the temporal-difference up-
dates, which we now observe decoupled from guidance of explo-
ration. These effects of off-policy reward shaping may be of inde-
pendent interest.

3 Experiments

We focus our attention to a classical benchmark domain of mountain
car [9]. The task is to drive an underpowered car up a hill. The base
reward is —1 for each step, except the final one. We define three
intuitive shaping potentials:

Position Encourage progress to the right (the goal): @1 (x) = ¢, X .
Height Encourage higher positions: ®2(x) = ¢ X h.
Speed Encourage higher speeds: ®3(x) = cs x |]?.}

‘We let the behavior be uniform over all actions (discrete throttle of
—1, 0, or 1), and deploy Horde to concurrently learn” the base task,
and the three policies shaped w.r.t. the above potentials. We devise
the ensemble policy via rank voting [12]. The evaluation is done by
interrupting the learning every 5 episodes, and executing each greedy
policy once. No learning was allowed during evaluation.

The speed shaping turns out to be the most helpful universally.
If this is the case, one would prefer to just use that shaping on its
own, but we assume no access to such information a priori. To make
our experiment more interesting, we consider two distinct scenarios:
with and without this shaping. We would like our ensemble to out-
perform both comparable shapings in the former, and at least match
the performance of the best one, in the latter case.

Table 1: Average of 1000 independent runs of 100 episodes each.
Initial/final labels refer to the first/last 20% of a run. The results that
are not significantly different from the best (p > 0.05) are in bold.

Variant Cumulative Initial Final
Without best shaping
No shaping -336.3 +£279.5 -784.7+3859  -185.14+99
Right shaping -3104 +96.9  -378.5+2174 -290.3 + 19.3
Height shaping | -283.2 £205.2 -594.2+4+317.0 -1823+75
Ensemble -211.2 £ 942 -330.6 £179.5 -180.2 £ 1.5
With best shaping

No shaping -349.7 £2852  -818.6 £373.7 -193.2+£ 109
Right shaping -303.4 + 81.4 -346.7 £ 181.2  -295.1 + 16.7
Height shaping | -292.4 +£213.8 -619.8 £3283  -190.1 £5.3
Speed shaping -158.6 + 23.7 -182.1 £ 50.6 -150.2 £+ 2.9
Ensemble -168.7 + 44.7 -214.8 + 94.8 -161.7 £ 4.0

The results in Table 1 show that individual shapings alone aid
learning speed significantly, and the ensemble policy meets our
desiderata: it either statistically matches or is better than the best
shaping at any stage. The exception is the final performance in the
second scenario, but the difference in the collected reward is still
rather small.

4 Conclusions and future work

We believe the Horde architecture to be well-suited for ensemble
learning in general, and, as it provides the necessary tools to learn
many PBRS policies simultaneously at no added cost, a convenient

3 Here x = (=, %) is the state (position and velocity), h is the height of the
hill, and ¢ = (¢, ¢p, ¢s) is a vector of tuned scaling constants.

4 We used v = 0.99, A = 0.4, = 0.1, 8 = 0.0001, and approximated the
state space via 10 tilings of 10 x 10.

framework for leveraging diverse heuristic knowledge. We demon-
strated our method to be effective even on a simple task, and with
an ad-hoc combination method. Larger problems with many locally
good shapings are the target benchmark, and we expect them to yield
larger benefits.

There are many directions for future work. Latent parallel learn-
ing of diverse value functions suggests exploring ways to learn good
combination strategies, or the potential functions themselves. Natu-
rally, such meta-learning has to happen at a much faster pace in order
to be useful in speeding up the main learning process. The scalability
of Horde allows for learning thousands of value functions efficiently.
While it is rarely sensible to define thousands of distinct shapings,
one could imagine maintaining many different scaling factors for the
existing shaping potentials. This would not only mitigate the scaling
problem, but make the representation more flexible by having non-
static scaling factors throughout the state space.

The primary limitation of Horde is the requirement to keep the be-
havior policy fixed (or change it slowly). Relaxing this constraint is a
topic of ongoing research. Horde tackles convergence, which is one
of the two main theoretical challenges with off-policy learning under
FA. The other has to do with the guality of solutions under off-policy
sampling, which may, in general, fall far from optimum. Kolter gives
a way of constraining the solution space, achieving stronger guaran-
tees [6], but his algorithm is quadratic in complexity and not scalable.
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